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Introduction

Polymers have found extensive applications in cables
and capacitors as dielectric materials [24, 27, 29, 39].
Mixing of poly(ethylene-co-vinyl acetate) EVA
and semi-crystalline polymers such as low-density
polyethylene (LDPE) gives composite materials having
better flexibility, toughness and high resistance to
environmental stress cracking due to the increase of
the adhesive strength at the matrix-rubber particle
interface [1, 14, 28, 30].

The treatment of such composition with high energy
radiation leads to various changes in their structure and
properties [3, 7]. Electron beam (EB) processing has
been demonstrated, to be a very effective means of
improving and use properties of various polymers [9, 23].
Until now, many investigations have been reported on
the effects of low, medium and high energy radiation
on mechanical, electrical and thermal properties of
EVA/LDPE blends [5, 16, 20, 22]. Nevertheless, studies
of the effect of high energy electron beam on electrical
properties of the blended EVA/LDPE samples have
received less attention.

In a previous work [31], we reported the effect of
high energy electron beam on mechanical and thermal
properties of EVA/LDPE blends. In this work, the effect
of 10 MeV electron beam on some electrical properties
such as: surface resistance, volume resistivity, permittivity
(dielectric constant), loss factor and voltage breakdown
of these blends is reported.
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(EVA) was prepared and irradiated with 10 MeV electron beam in the range of 50−380 kGy at room temperature in air.
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factor were studied as a function of the EVA content and the radiation dose. It was revealed that the surface resistance
and volume resistivity of the blends reach a maximum at a 170 kGy dose of radiation and 30 wt% of EVA. There is no
considerable change at breakdown voltage permittivity and loss factor of the irradiated samples; however, the permittivity
and the loss factor of the blends increase significantly with increasing amount of EVA contents.
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Experimental

LDPE (LH-0075) with a density of 0.921 g⋅cm−3 was
obtained from Bandar Emam Petrochemical Company
(Iran). EVA containing 18% vinyl acetate was purchased
from BP Co. UK. The EVA/LDPE blends in ratios of
0.0, 10, 20, 30 and 100 wt% of EVA were melt-mixed
and then molded to flat sheets (2 ± 0.05 mm thickness)
using hot pressing at a temperature of 180°C for 5.0 min
under 20 MPa pressure and the sample were then
cooled to room temperature. Radiation of the sample
sheets was carried out at room temperature in air by
a high energy electron accelerator (TT200, Yazd/Iran
Radiation Processing Center) under various radiation
doses ranging from 50 to 380 kGy.

Surface and volume resistance were measured at
room temperature by a teraohmmeter, made by CEAST
Company.

A dielectric loss measurement system, model
TRS-10T (ANDO Electric Co., Japan) was used for
determining the dielectric constant and the dielectric loss
tangent of the samples. Frequency was tuned at 1 MHz
in the experiments.

The voltage breakdown of the samples was measured
by a Dielectric Rigidity system P/N 6135.053, CEAST
Company, made in Italy.

Results and discussion

Figure 1 compares the surface resistance of EVA/LDPE
blended samples containing 10, 20 and 30 wt% of EVA
with unblended LDPE and EVA as a function of
irradiation dose. It is clear from Fig. 1 that the surface
resistance of the unblended EVA samples is substantially
lower than that of LDPE and also EVA/LDPE blends.
In addition, it can be seen that the more content of EVA
is used in the blend, the lower surface resistance is
achieved. All samples (except unblended LDPE) showed
an increase of surface resistance when irradiated by high
energy electron beam up to 170 kGy of irradiation dose.
Around the 170 kGy radiation dose, which is an optimum
dose for the best cross-linking of the EVA/LDPE blends
[31]; there is a noticeable increasing of surface resistance
for all blends. For the radiation doses higher than
170 kGy, the surface resistance of the samples decreased

abruptly (with the exception of LDPE), and then
converged to each other.

With increasing EVA content in the composition
up to 30 wt%, the maximum of the trace observed at
170 kGy is increased more rapidly than the blends
with the smaller content of EVA component. In
addition, the surface resistance of the unblended EVA
sample is substantially smaller than that of the blended
samples at high irradiation doses. With increasing
radiation dose, however, the surface resistance of the
LDPE remained unchanged. Similar trend is revealed
in Fig. 2 in which alike the surface resistance curves,
the volume resistivity of the blend containing 30 wt%
of EVA is higher than the other samples around the
170 kGy radiation dose. Nevertheless, the volume
resistivity at higher doses for all cases are identical. The
noticeable peaks in the surface and volume resistivity
curves around 170 kGy may be related to higher cross-
linking density at this dose of radiation which causes to
increase the average molecular weight of polymer.
Presence of much more cross-linking points can be
considered as barrels to prevent the charge movement
between polymer chains and thus increase the electrical
resistance of cross-linked sample [4, 25]. This argument
is in agreement with the Kolesov study on the PE in
which he described the influence of molecular weight
on morphological and electrical properties of PE, he
also has shown that the increase of the molecular weight
leads to an increase in the volume resistivity [17]. Also
Marsacq et al. [21] have shown that the increase in
molecular weight leads to an increase in charging ability
of PE, i.e. the growth of a number of traps in material
which prevent the charge movement inside the polymer
and hence increase the electrical resistance. Therefore,
it can be said that the accordance of electrical resistance
peak of the blend with the 170 kGy irradiation dose is
related to the increase of traps and molecular weight
of polymer due to cross link formation.

At higher doses, the cross-linking process occurs
along with chain scission reaction, probably this later is
predominating [8, 35]. As a result, non homogeneities
owing to molecular chain segmentation which are
introduced into the polymer matrix and polar and ionic
products due to irradiation can probably cause the
resistance of samples to decrease [18, 26].

As can be observed from Figs. 1 and 2, the surface
resistance and volume resistivity of the blends around

Fig. 2. Volume resistivity vs. absorbed dose of 10 MeV
electron beam for (l) unblended EVA, (4) LDPE and EVA/
LDPE blends at (5) 10, (A) 20 and (×) 30 wt% of EVA.

Fig. 1. Surface resistance vs. absorbed dose of 10 MeV
electron beam for (l) unblended EVA, (4) LDPE and EVA/
LDPE blends at (5) 10, (A) 20 and (×) 30 wt% of EVA.
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the 170 kGy increase with the content of EVA. Several
studies have indicated that the gel content and the cross-
linking density of EVA/LDPE blends at an optimum
radiation dose increase with increasing EVA content
[10, 31, 32], and the highest gel content is observed when
the amount of EVA in the blended samples reaches
30 weight percent [10, 11]. So, we can state that the highest
surface resistance and volume resistivity of the blends
at 170 kGy and 30 wt% of EVA may be related to the
highest cross-linking density.

In Fig. 3, the breakdown voltage of the samples
against the radiation dose has been plotted. EVA
samples undergo dielectric breakdown at voltages lower
than LDPE and EVA/LDPE blends. In all cases no
considerable variation of breakdown voltage is revealed
when the radiation dose is increased. This may be
attributed to the fact that increasing of the radiation
dose leads to an increase in cross-linking degree in
amorphous area which may be barrels to prevent the
electrical breakdown path inside the polymer matrix
[19, 25, 40]. On the other hand, increasing of the radiation
dose increases the chain scission of the PE and leads to
increase the carbonyl groups and also shallow trap
centers [6, 15], so, this causes to increase the mobility
of the charge carrier and finally decrease the breakdown
voltage. The mutual effect of radiation, i.e. the increase
of breakdown voltage due to cross-linking on the one
hand, and the decrease of breakdown voltage due to
chain scission, on the other hand, causes the breakdown
voltage of the polymer sample to remain without
considerable variation. Our assumption is that the above
argument shows an opposite behavior, so it may be
concluded that the radiation dose does not make effect
so much on the breakdown variation. From Fig. 3, it
can also be seen that the blends and EVA break
electrically in voltages lower than LDPE samples which
may be attributed to the presence of polar groups on
the EVA back bone [34, 38].

Figures 4 and 5 show the dependence of the
permittivity (dielectric constant) and the loss factor of
the samples on the radiation dose, respectively. Figure 4
shows that the permittivity of the blends is smaller than
that of EVA, and with increasing radiation dose the
permittivity increases very slowly. One may conclude
that the electron beam radiation disintegrates molecules
and increases the number of dipoles, so that the higher
radiation dose produces a larger permittivity [13, 33].

The permittivity of the polymer is representative of the
various polarization phenomena that come into play
when the polymer is subjected to an electric field. The
overall polarization of a polymer, like the PE, is the sum
of four terms: electronic, atomic, orientation and space-
charge polarization, among them the first two are intrinsic
in nature and for non-polar polymer are important [2].
For polar polymers, both the atomic and electronic
polarization are often negligible compared to orienta-
tion and space charge polarization [2]. It has been shown
that there is a relationship between injecting depth and
energy of electron radiation. For example, as the
radiation energy of electrons is 15 MeV or 30 keV,
the injecting depth can be approximately deduced as
4 mm and 50 µm, respectively [36, 37]. This means that
10 MeV electron beam can penetrate totally inside the
2 mm polymer sheet, so there will be very little space
charges left in the bulk of the sample. So, it is the
orientation polarization that has a major contribution
to the permittivity of a polar polymer like the EVA.
This arises owing to the presence of permanent dipoles
on the back bone of the macromolecular chain. Since,
LDPE is a non-polar polymer with smaller permittivity
than EVA; its blends would show permittivity which is
held between the permittivity of the LDPE and EVA
depending on the content of EVA component in the
blends. In other words, the more content of EVA in
the blends, the larger amount of permittivity will be
achieved. It is desirable to keep the capacitance of the

Fig. 3. Breakdown voltage vs. absorbed dose of 10 MeV
electron beam for (l) unblended EVA, (4) LDPE and EVA/
LDPE blends at (5) 10, (A) 20 and (×) 30 wt% of EVA.

Fig. 5. Variation of the dielectric loss factor of (l) unblended
EVA, (4) LDPE and EVA/LDPE blends at (5) 10, (A)
20 and (×) 30 wt% levels of the former, with absorbed dose
of 10 MeV electron radiation.

Fig. 4. Variation of the dielectric constant of (l) unblended
EVA, (4) LDPE and EVA/LDPE blends at (5) 10, (A)
20 and (×) 30 wt% levels of the former, with absorbed dose
of 10 MeV electron radiation.
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insulating material as minimal as possible when they
are used as cables in industries. Furthermore, from
Fig. 4 it can be seen that although the permittivity of
the blends is smaller than that of EVA and larger than
that of LDPE, however, the content of EVA in the
blends (up to 30 wt%) and the radiation dose (up to
380 kGy) have negligible influence on the permittivity
of the LDPE samples.

Figure 5 reveals that the loss factor of the LDPE
polymer is smaller than that of EVA/LDPE blends and
EVA which can be related to the presence of polar
groups and heterogeneity nature of the blend samples.
For non-polar polymers, the loss factor may, however,
increase sharply due to the presence of additives,
impurity concentrations and physical heterogeneity [12].
However, the loss factor of all samples remains without
significant change with increasing radiation dose. This
means that mixing of a polar polymer at low amount
level can affect the electrical properties of the non-polar
polymer, whereas the radiation dose cannot create
considerable effect on the electrical properties of such
polymers.

Conclusions

Effects of adding the EVA polymer and of high energy
electron radiation on the electrical properties of low-
density polyethylene have been investigated. The
surface and volume resistance and also breakdown
voltage of the blends prepared by mixing of various
amounts of EVA with LDPE decrease compared to the
unblended LDPE, while the permittivity and loss factor
increase. The larger increase of the amount of EVA in
the blends, the greater change of the cited electrical
properties occur in the polymer sample. On the other
hand, the breakdown voltage, dielectric constant and
loss factor of all the blends remain relatively constant
and the surface and volume resistance of the samples
were affected significantly by increasing the radiation
dose. So, the resistance of all blends increases when
the radiation dose increases up to 170 kGy. The increase
of the resistance of the blend containing 30% of EVA
is larger than that of the other blend samples. Increasing
the radiation dose over 170 kGy considerably reduces the
surface and volume resistance of all samples.
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