Introduction

R. Gavai, S. Gupta and S. Mukherjee [5] predict in “quenched QCD” at 2T_c and 3T_c that the specific heat, \(c_v/T^3 \), differs significantly from the value for an ideal gas −15 compared to 21 (see Fig. 1). Can this be measured?

Event-by-event average \(p_T \) fluctuations and specific heat

Single particle distributions

The single particle transverse momentum (\(p_T \)) distribution averaged over all particles in all events for a p-p experiment (inclusive) or in all events of a given centrality class for an A+A experiment (semi-inclusive) is usually written in the form:

\[
\frac{d\sigma}{dp_T} = \frac{b}{\Gamma(p)} (bp_T)^{p-1} e^{-bp_T} \quad \text{or} \quad \frac{d\sigma}{dp_T dp_T} = \frac{b^2}{\Gamma(p)} (bp_T)^{p-2} e^{-bp_T}
\]

(1)
Equation (1) represents a gamma distribution, where \(\langle p_T \rangle = \frac{p}{b} \), \(\sigma_{p_T}/\langle p_T \rangle = 1/\sqrt{p} \). Typically \(b = 6 \text{ (GeV/c)}^{-1} \) and \(p = 2 \) for p-p collisions. As shown in Fig. 2, the \(p \) parameter depends on the particle type in central Au+Au collisions, with \(p < 2 \) for \(\pi^\pm \), \(p = 2 \) for \(K^\pm \) and \(p > 2 \) for (anti-)protons, but the asymptotic slope tends to be the same for all particles. The ‘inverse slope parameter’, \(T = 1/b \), is usually referred to as the ‘temperature parameter’.

Event-by-event average

For events with \(n \) detected charged particles with magnitudes of transverse momenta, \(p_{T_i} \), the event-by-event average \(p_T \), denoted \(M_{pT} \), is defined as:

\[
M_{pT} = \bar{p}_T = \frac{1}{n} \sum_{i=1}^{n} p_{T_i}
\]

By definition \(\langle M_{pT} \rangle = \langle p_T \rangle = \mu \); however, it takes hard work to make one’s data follow this identity to high precision (\(\ll 1\% \)). The standard deviation of \(M_{pT} \) is defined the usual way:

\[
\sigma^2_{M_{pT}} = \left(M_{pT}^2 \right) - \left(M_{pT} \right)^2
\]

If all the \(p_{T_i} \) on all events are random samples of the same \(p_T \) distribution, then:

\[
\sigma^2_{M_{pT}} = \frac{\sigma^2_{p_T}}{n}
\]

where \(\sigma_{p_T} = \sqrt{\langle p_T^2 \rangle - \langle p_T \rangle^2} \) is the standard deviation of Eq. (1), the inclusive \(p_T \) spectrum (averaged over all events).

A nice illustration of what can be revealed by the event-by-event average that is not shown by the inclusive average over all events was given by Korus et al. [6]. Suppose that each collision has a different temperature parameter such that the ensemble of events has a mean, \(\langle T \rangle \), with standard deviation, \(\sigma_T = \sqrt{\langle T^2 \rangle - \langle T \rangle^2} \), about the mean. It is easy to show that for this case:

\[
\frac{\sigma^2_{M_{pT}}}{\mu^2} = \frac{1}{n} \left(1 - \frac{1}{n} \right) \frac{\sigma^2_T}{\langle T \rangle^2}
\]

Specific heat

As pointed out by Korus et al. [6] if the parameter \(T \) would correspond to the actual temperature of the system, not just the inverse slope of the \(p_T \) distribution, then a basic equation of thermodynamics would relate the temperature fluctuations of a system to its total heat capacity [7–9]:

\[
\frac{1}{C_V} \langle T \rangle^2
\]
How to measure specific heat using event-by-event average p_T fluctuations

where C_V is an extensive quantity corresponding to the total number of particles in the system, $\langle N_{\text{tot}} \rangle$. Thus the specific heat per particle is $c_V = C_V / \langle N_{\text{tot}} \rangle$. Gavai et al. [5] refer to this same (dimensionless) quantity as c_v/T^3, resulting in the final equation:

\[
\frac{c_v}{T^3} = \frac{1}{\langle N_{\text{tot}} \rangle} \frac{1}{\sigma^2(T)/\langle T \rangle^2}
\]

where n represents the number of particles used in the calculation of M_{p_T} (Eq. (5)) from which $\sigma^2(T)/\langle T \rangle^2$ is determined.

Measurements of M_{p_T}

The measured M_{p_T} distributions for two centrality classes in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions in PHENIX [2] are shown in Fig. 3 (data points) compared to a random baseline (histograms). Mixed-events are used to define the baseline for random fluctuations of M_{p_T}. This has the advantage of effectively removing any residual detector-dependent effects. The event-by-event average distributions are very sensitive to the number of tracks in the event (denoted n), so the mixed event sample is produced with the identical n distribution as the data. Additionally, no two tracks from the same data event are placed in the same mixed event in order to remove any intra-event correlations in p_T. Finally, $\langle M_{p_T} \rangle$ must exactly match the semi-inclusive $\langle p_T \rangle$.

The non-Gaussian, gamma distribution shape of the M_{p_T} distributions is evident. The difference between the data and the mixed-event random baseline distributions is barely visible to the naked eye. PHENIX quantifies the non-random fluctuation by the fractional difference of the standard deviations of M_{p_T} for the data and the mixed-event (random) sample:

\[
F_{p_T} = \frac{\sigma_{M_{p_T,\text{data}}} - \sigma_{M_{p_T,\text{mixed}}}}{\sigma_{M_{p_T,\text{mixed}}}}
\]

which is on the order of a few percent. The results are shown (Fig. 4-left) as a function of centrality (represented by N_{part}) for charged particle tracks in the range $0.2 \text{ GeV/c} \leq p_T \leq 2.0 \text{ GeV/c}$; and, for the 20–25% centrality class ($N_{\text{part}} = 181.6$), over a varying p_T range, $0.2 \text{ GeV/c} \leq p_T \leq p_T^{\text{max}}$ (Fig. 4-right).

The steep increase in F_{p_T} for the small increase in the number of tracks with increasing $p_T^{\text{max}} > 1 \text{ GeV/c}$ is consistent with correlations due to jet production as shown by the dotted lines [2]. However, other explanations have been proposed [4]. Note that the errors are entirely systematic, due to time-dependent detector variations. Comparatively, statistical errors are negligible.

How to measure c_v/T^3

For the small values of F_{p_T} observed, one can make use of the identity

\[
\frac{\Delta \sigma^2}{\sigma^2} = 2 \frac{\Delta \sigma}{\sigma} = 2F
\]

to obtain the relation:

\[
\left(1 - \frac{1}{n}\right) \sigma^2_{M_{p_T}} = \frac{\sigma^2_{M_{p_T,\text{data}}}}{\mu^2} - \frac{1}{n} \sigma^2_{p_T} = \frac{2F_{p_T}}{n \mu^2} = \frac{2F_{p_T}}{n \mu^2} = \frac{F_{p_T}}{n}
\]

Combining Eq. (10) with Eq. (7), we obtain the simple and elegant expression:

\[
\frac{c_v}{T^3} = \frac{\langle n \rangle}{\langle N_{\text{tot}} \rangle} \frac{1}{F_{p_T}}
\]

Note that F_{p_T} is measured with a fraction $(n)/(N_{\text{tot}})$ of the total particles produced, which is a purely geometri-
cal factor representing the fractional acceptance of the measurement. For example, if all particles are produced in a range $\delta \eta_{\text{FWHM}}$ (assuming a flat or trapezoidal $dn/d\eta$ over this interval) and if including the neutrals gives a factor of 1.5 more total particles than charged particles; and if F_{pT} is measured with charged particles in an acceptance $\delta \eta_c$, $\delta \phi_c/2\pi$, which due to the p_T cut only represents a fraction f_c of the charged particles on that solid angle, then:

$$\langle N_{\text{tot}} \rangle = 1.5 \cdot \frac{2\pi \cdot \delta \eta_{\text{FWHM}}}{f_c \cdot \delta \phi_c \cdot \delta \eta_c}$$

For RHIC at $\sqrt{s_{\text{NN}}} = 200$ GeV, $\delta \eta_{\text{FWHM}} = \pm 3.5$ [3], and the PHENIX acceptance was $\delta \eta = \pi$, $\delta \phi = \pm 0.35$, $f_c = 0.9$ for $p_T \geq 0.2$ GeV/c, resulting in $(N_{\text{m}})/(n) = 33$. From Fig. 4, F_{pT} is of order 2% but most of that is due to jets, so the effect due to temperature fluctuations is $< F_{pT}$, say 1%, so we obtain $c/T^3 > 1/(33*0.01) = 3$.

This is to be compared to the Korus et al. [6], result of $c/T^3 = 60 \pm 100$ from the NA49 data. Recall that Gavai et al. [5] predict a value of 15 for c/T^3, which would correspond to a value of $F_{pT} = 1\% \times 3/15 = 0.20\%$ for the data in Fig. 4 (see Fig. 5).

Perhaps this precision can be achieved by concentrating on the region $p_T^{\text{max}} \leq 0.6$ GeV/c, where jets have least effect. Also, as the present error is totally systematic due to run-by-run variation, there is hope that a substantial reduction should be possible.

Conclusions

In central heavy-ion collisions, the huge correlations in p-p collisions are washed out [7]. The remaining correlations are: jets; Bose-Einstein correlations; hydrodynamic flow. These correlations seem to saturate the present fluctuation measurements. No other sources of non-random fluctuations have been observed. This puts a severe constraint on the critical fluctuations that were expected for a sharp phase transition but is consistent with the present expectation from lattice QCD that the transition is a smooth crossover. In order to see the temperature fluctuations predicted by $c/T^3 = 15$ in lattice gauge calculations, present sensitivity needs to be improved by an order of magnitude by removing the known sources of correlation and improving the measurement errors. An interesting check of whether temperature fluctuations, rather than the correlations noted above, produce the observed non-random fluctuations is provided by Eq. (10): for a pure σ^2/T^2 fluctuation, F_{pT} for a given centrality should increase linearly with the number of tracks measured (e.g. by increasing the solid angle – PHENIX cf. STAR).

1 Using the variable $\phi = \sigma_{pT} F_{pT} = \sqrt{2}(T) F_{pT} = 0.6 \pm 1.0$ MeV for $T = 180$, from NA49, cited by Korus et al. [6] we find the value $F_{pT} = 0.24\% \pm 0.39\%$. The values for $(n) = 270$ and $(N_{\text{m}})/(n) = 1.5 \times 5$ also cited yield $c/T^3 = 1/((7.5 F_{pT}) = 56 \pm 93$ in agreement with the quoted value of 66 ± 100.

Fig. 4. F_{pT} vs. centrality and p_T^{max} compared to simulations [2].

Fig. 5. Gavai et al. prediction [5] compared to PHENIX measurement.

Fig. 6. PHENIX Au+Au vs. PYTHIA-based Simulation.
Acknowledgment Research supported by U.S. Department of Energy, DE-AC02-98CH10886.

References