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Introduction

As the fireball of a nucleus-nucleus collision cools
down below a certain freeze-out temperature TFO ≤ Tc
−~175 MeV the inelastic (chemical freeze-out) and
elastic (kinetic freeze-out) collisions among the hadrons
cease. This process is usually called the freeze-out
scenario (FO). Several approaches have been applied
for the description of the freeze-out of strongly interacting
matter. Especially, there are kinetic models [1, 11] as
well as hydrodynamical approaches [5] which have been
proven to be able to describe most of the collective
phenomena like the different flow components in
heavy-ion reactions. Despite the success in comparison
with experiments, the in-medium modifications of the
hadrons during the freeze-out process have not been
taken into account yet. In all of the former evaluations
the vacuum parameters of the particles have been
implemented. However, during the freeze-out process,
the temperature and particle densities are presumably
close to the deconfinement phase transition critical
values [2]. Accordingly, strong in-medium modifications
of hadronic properties like mass, width, coupling
constants, etc., are expected. The question arises how
strong their impact on the freeze-out process is. For
answering this issue, we study a nucleon gas and
investigate how strong is the impact of an in-medium
nucleon mass shift on the thermodynamical parameters,
temperature, flow-velocity, energy density and particle
density, of the freeze-out scenario.
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Abstract  We investigate the kinetic freeze-out scenario of a nucleon gas through a finite layer. The in-medium mass
modification of nucleons and its impact on the freeze-out process is studied. A considerable modification of the
thermodynamical parameters temperature, flow-velocity, energy density and particle density has been found in comparison
with evaluations which use a constant vacuum nucleon mass.
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Freeze-out process within a finite layer

The theoretical description of the kinetic freeze-out
within a hydrodynamical approach has been worked out
some years ago (see [8] and references therein). Here,
the evaluations presented are based on the approach
of Ref. [9], where the freeze-out description has been
generalized to the case of a finite time-like layer (a finite
space-like layer has also been investigated in [10]; more
details about the approach presented will be published
in [12]). Accordingly, local equilibrium implies that the
thermodynamical parameters inside the layer become
space-time dependent, i.e. we have a space-time depend-
ent temperature T(x), flow velocity v(x), energy density
e(x) and nucleon density n(x). From the equations of
hydrodynamics, we derive the following set of coupled
differential equations for three unknowns

(1) de(x) = uµ(x)dTµν(x)uν(x) + 2duµ(x)Tµν(x)uν

(2) dn(x) = uµ(x)dNµ(x)

(3)

The differentials in Eqs. (1)−(3) are deduced from the
microscopic definition, dNµ(x) = ∫[(d3k)/k0]kµdf(x,k) for
the particle current, and dTµν = ∫[(d3k)/k0]kµkνdf(x,k)
for the energy momentum tensor. Here, xµ = (t,r) is the
four-coordinate and kµ = (Ek,k) is the four-momentum
of the nucleon; the scalar one-particle distribution
function is normalized to the invariant number of
nucleons N, i.e. N = ∫d3rd3k f(x,k). We mention that
the second term in Eq. (1) vanishes within the approach
presented, but not in general. The rest frame of the gas
(RFG) is defined by uµ

RFG(x) = (1,0,0,0). For baryon-
dominated matter, like in our case, the Eckart’s
definition [3] of four-flow is commonly used, defined
by uµ(x) = Nµ(x)/√Nν(x)Nν(x). Another Lorentz frame,
e.g. rest frame of the front (RFF), can be defined by
a Lorentz boost in respect to RFG.

Since there are four unknowns in the problem under
consideration an additional constraint is necessary,
which is provided by the equation of state (EOS) for
the nucleon gas [7]

(4)

The nuclear binding energy is E0 = 16 MeV, and K =
~− 235 MeV is the compressibility; MN(n,T) is the in-
medium nucleon pole mass. The EOS (Eq. (4)) is used
to determine the temperature T(x) of the interacting
component of the nucleon gas during the freeze-out
process. Accordingly, the four equations (1), (2), (3)
and (4) represent a closed set for evaluating the four
unknowns T,v,e,n of the one-particle system.

Furthermore, as the system expands and cools down
the number of interacting particles decreases up to the
post freeze-out surface of the finite layer, where by

definition the density of interacting particles vanishes.
Correspondingly, the particle distribution function is
decomposed into two components, an interacting part
fi and a non-interacting part ff, thus f(x,k) = fi(x,k) +
ff(x,k). Accordingly, there is an interacting particle
density ni and a non-interacting particle density nf with
n = nf + ni. On the pre-freeze out hypersurface we
assume to have thermal equilibrium, i.e. we have a
Jüttner distribution, cf. [3], for fi as starting a one-
particle distribution function, while by definition ff is
zero on the pre-freeze out hyper-surface. The space-
time evolution of the interacting and non-interacting
components inside the layer is governed by the following
differential equations [9]:

(5)

(6)

with the time τ between collisions, and feq is the Jüttner
distribution, cf. [3]. The second term in Eq. (5) is the
re-thermalization term [8], which describes how fast
the interacting component approaches the Jüttner
distribution within a relaxation time τ0. Here, we will
use the immediate re-thermalization limit τ0 → 0, which
implies fi → feq faster than τ0 → 0. The explicit expressions
for the differentials dNµ and dTµv within the approach
presented can be found in [9].

The set of equations (1)−(6) allow us to evaluate
the basic thermodynamical function T(x), v(x), e(x) and
n(x) during the freeze-out process for a particle with
a mass MN(n,T).

Nucleon mass shift

A generalization of the QCD sum rule approach for
nucleons at finite densities and temperatures [4] leads
to the following expression for the pole mass of a nucleon
embedded in a hot and dense hadronic medium,

(7)   MN(n,T) = MN(0) + ReΣS(n,T) + ReΣV(n,T)

where MN(0) = 939 MeV is the vacuum nucleon pole
mass with the attractive scalar part (ReΣS < 0) and the
repulsive vector part (ReΣV > 0) of nucleon self energy
in medium. Typical values at nuclear saturation density
n0 = 0.17 fm−3 and at vanishing temperature are ReΣS
= −400 MeV, ReΣV =+300 MeV [4]. Here, we will take
the QCD sum rule results for a nucleon in matter, given
by [4]

(8)

(9)
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Here, 〈Ω |q−q|Ω〉  and 〈Ω |q†q|Ω〉  are in-medium
condensates and |Ω〉  is a state which describes the hot
and dense hadronic matter inside the layer, while
〈0|q−q|0〉  = (−0.250 GeV)3 is the chiral condensate. In
Eqs. (8) and (9) we have neglected the gluon condensate
and higher mass dimension condensates which give rise
to small corrections only.

There are two nucleonic components inside the
finite layer: an interacting component with density ni
and a non-interacting component with density nf. For
evaluating the condensates Eqs. (8) and (9) we
approximate the interacting component by a Fermi gas
with chemical potential µi and temperature T. On the
other side, the temperature for the non-interacting
component becomes ill-defined. Nonetheless, a relevant
physical parameter for describing the non-interacting
component remains the density nf. Accordingly, the
condensates in one-particle approximation are given as
follows [13]:

(10) 〈Ω|q−q|Ω〉  = 〈0|q−q|0〉  + I
^

(µi,T)〈N(k)|q−q|N(k)〉
                                     nf              +                 〈N(k)|q−q|N(k)〉
                                2MN(0)

(11) 〈Ω|q†q|Ω〉 = I
^

(µi,T)〈N(k)|q†q|N(k)〉
                                        nf                  +                 〈N(k)|q†q|N(k)〉
                                    2MN(0)

with I
^

≡ 4∫d3k/[(2Ek)(2π)3(exp((Ek − µi)/T) + 1)]; for
vanishing temperature we have I^→ ni/(2MN) . Note that
〈0|q†q|0〉 = 0; the nucleon energy is Ek = √MN(0)2 + k2.
For nucleons we take the relativistic normalization
〈N(k1)|N(k2)〉  = 2Ek1(2π)3σ(3)(k1 − k2) is used. The
chemical potential for the interacting component can
be evaluated via ni = 4∫d3k/[(2π)3(exp(Ek − µi)/T + 1)].
The condensates in Fermi gas approximation are
given by [6] 〈N(k)|q−q|N(k)〉  = MN(0)σN/mq and
〈N(k)|q†q|N(k)〉  = 3MN(0). The nucleon sigma term is
σN −~ 50 MeV, and mq −~ 5 MeV is the averaged current
quark mass of the light quarks. Inserting these parameters
into Eqs. (8) and (9), we obtain ReΣS = −390 MeV and

ReΣV = 315 MeV at ground state saturation density n0.
Equations (7)−(11) summarize our propositions made
for obtaining the in-medium nucleon pole mass
MN(n,T), which enters the EOS (4) and the differentials
dNµ and dTµv.

Results and discussion

For all of the calculations, we have taken TpreFO =
150 MeV, npreFO = 1.5n0, and npreFO = 0.5c, as starting
values on the pre-freeze out hypersurface. These values
are, for instance, in line with typical parameters which
have been reached within the Alternating-Gradient
Synchrotron (AGS) at Brookhaven National Laboratory
(BNL) in Brookhaven/USA. Higher baryonic densities
can be reached within the Schwer-Ionen-Synchrotron
(SIS) at Gesellschaft für Schwerionenforschung (GSI)
in Darmstadt/Germany. Note that TpreFO and npreFO are
pre-freeze out values and, therefore, they are larger than
typical post-freeze out values given, for instance, in
Ref. [2].

In Figs. 1 and 2, the time evolution of the primary
thermodynamical functions through the finite freeze-
out layer are shown, in terms of the proper time τ. Note
that the densities n = ni + nf and e = ei + ef are kept
constant inside the layer.

We find a substantial impact of in-medium mass
modification on the freeze-out process within the purely
nucleon gas model. Furthermore, Figs. 1 and 2 also
elucidate that the freeze-out process proceeds faster
for all thermodynamical quantities T,v,e,n when taking
into account the mass dropping of nucleons. The
physical reason for a faster freeze-out originates from
a smaller energy density of the nucleon system due to a
smaller nucleon mass MN(n,T) compared to the vacuum
nucleon mass MN(0).

Finally, we remark that in-medium modifications
have actually to be taken into account not only during
the freeze-out process, but also before, i.e. during the
hadronization. This points then to an even stronger
impact of in-medium modifications on the final particle
spectrum than presented.

Fig. 1. Left: the temperature of the interacting component. Right: the flow velocity parameter v of the interacting component.
The solid lines are with a constant nucleon mass MN(0) = 939 MeV, while the dashed curves are evaluated with a density and
temperature dependent nucleon mass MN(n,T).
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Summary

We have investigated a freeze-out scenario within a
finite layer for a massive nucleon gas. Special attention
has been drawn to the issue how strong is the impact of
the in-medium nucleon mass modification on the
thermal freeze-out process. By focussing on a purely
nucleon gas, we have found a substantial effect on the
thermodynamical quantities like temperature T, flow
velocity v, particle density n and energy density e of the
interacting component. All of these thermodynamical
functions have revealed a faster freeze-out compared
to a scenario without an in-medium nucleon mass shift.

In summary, our findings for a nucleon gas suggest
that taking into account in-medium modifications of
nucleons seems to be necessary and is an interesting
phenomenon, in particular, for collision scenarios with
high baryonic densities.
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