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Introduction

Ultrarelativistic heavy-ion collisions are at present the
only tools to study properties of dense and hot nuclear
matter experimentally. The main aim of the experi-
ments at RHIC BNL and at coming LHC CERN is to
reveal new phenomena attributed to highly anticipated
formation of quark-gluon plasma (QGP) and its
subsequent hadronization. Anisotropic flow is one of the
most promising signals which are extremely sensitive
to creation even a small amount of QGP. Recall, that
the collective flow of nuclear matter in azimuthal plane
can be decomposed into isotropic radial component and
anisotropic one by means of Fourier expansion of the
particle invariant distribution [24]

(1)

where φ is the azimuthal angle between the transverse
momentum of the particle and the reaction plane, and
pt and y is the transverse momentum and the rapidity,
respectively. The sum in the r.h.s. of Eq. (1) represents
the anisotropic flow. Its first two harmonic coefficients
are called directed flow

(2)

and elliptic flow, respectively,
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(3)

The latter measures the eccentricity of the particle
distribution in the momentum space in the coordinate
system with the z-axis directed along the beam and the
impact parameter axis labeled as x.

Anisotropic flow is very sensitive to the equation of
state (EOS) of nuclear matter. The vanishing of pressure
gradients in the mixed phase of first order quark-hadron
phase transition, known as the softening of the EOS,
should result in deviations of the directed flow of
nucleons from the linear behavior [17]. Also, the large
value of the elliptic flow measured in RHIC experiments
may indicate very short equilibration times and large
initial pressure gradients, both attributed to properties
of a strongly interacting matter. Therefore, the study of
the formation and evolution of anisotropic flow remains
one of the top-priority topics of the heavy-ion
programme.

The development of anisotropic flow is closely
related to the freeze-out of particles. The microscopic
model calculations [12, 13] show the absence of sharp
freeze-out of particles in relativistic heavy-ion collisions.
In contrast to assumptions of hydrodynamic models,
the expanding fireball in microscopic models can be
rather treated as a core consisting of still interacting
hadrons, and a halo, which contains particles already
decoupled from the system. The order of the freeze-
out of different species seems to be the same for energies
ranging from AGS to RHIC: 1 − pions, 2 − kaons, 3 −
lambdas, 4 − nucleons. The aim of this paper is to study
consequences of the continuous freeze-out to the
evolution of anisotropic flow of hadrons.

Directed and elliptic flow

For our study, we employ the quark-gluon string model
(QGSM) [3, 4, 20], which is a microscopic model based
on the Gribov reggeon theory (GRT) [18, 19] of
hadronic and nuclear interactions at high energies. The
main advantage of the GRT is the fulfillment of
unitarity conditions in s- and t-channel for multiparticle
processes. The QGSM incorporates also the string
fragmentation, resonance formation, and hadronic
rescattering. The latter implies that the decay products
of a string − stable hadrons and their resonances − can
further interact with other hadrons.

Directed flow at midrapidity

Directed flow of hadrons is developing almost till the
end of the fireball evolution in microscopic models [9,
21]. Its rapidity distribution has the following feature:
at incident energies below 10 AGeV, the flow of nucleons
grows linearly with increasing rapidity between the
target and projectile fragmentation regions (normal
flow), whereas the flow of pions decreases in the same
rapidity range (antiflow behavior). The one-fluid hydro-
dynamic model indicates [10] that deviations from the

straight line behavior can be caused only by the creation
of QGP. However, all microscopic models [8, 11, 16,
22, 23] demonstrate a presence of the so-called wiggle
structure in the directed flow of nucleons, first mentioned
for very peripheral Au+Au collisions at AGS energy
in [8]. Experimentally, the wiggle structure of directed
flow of protons was observed in peripheral Pb+Pb
collisions at SPS energy [2]. As to RHIC energies, the
directed flow of charged particles is essentially zero at
|y|≤ 2 in most microscopic models. In QGSM calcula-
tions the flow has negative slope. Figure 1 displays the
ν1(η) distribution of charged hadrons in Au+Au
collisions at √s = 200 AGeV. Here the PHOBOS
Collaboration data [7] are compared to the QGSM
calculations for different centrality bins. One can see
that though the data seem to favor the antiflow
elongation, the measured signal is quite weak, and
relatively large systematic error bars do not permit to
make more definite conclusions. We are awaiting new
data to resolve the ambiguity.

Development of elliptic flow

To investigate the formation of elliptic flow, ca. 20*103

gold-gold collisions with the impact parameter b = 8 fm
were generated at √s = 130 AGeV. According to previous
studies [1, 26, 27] the elliptic flow of charged particles
is close to its maximum at this impact parameter, and
the multiplicity of secondaries is still quite high. To
demonstrate the absence of sharp particle freeze-out
at RHIC energies, the dN/dt distributions of charged
hadrons, pions, nucleons and lambdas, which are
decoupled from the system after their last elastic or
inelastic interaction, are shown in Fig. 2a. One can see
that a substantial part of hadrons leaves the fireball
immediately after their production within the first two
fm/c, in stark contrast with heavy-ion reactions at lower
energies [12, 13].

Fig. 1. Directed flow of charged particles in Au+Au collisions
at AGeV. Boxes denote PHOBOS data [7] and lines − QGSM
calculations.
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Elliptic flow carried by these hadronic species is
presented in Fig. 2b. The baryonic and mesonic
components are completely different: pions emitted
from the surface of the expanding fireball within the
first few fm/c carry the strongest flow, while later on
the flow of pions is significantly reduced. In contrast to
pions, the baryon fraction acquires stronger elliptic flow
during the subsequent evolution of the system. Clearly,
the elliptic flows of pions and nucleons cannot be
produced simultaneously after t ≈ 15 fm/c within the same
fireball. Where these particles come from? Figure 3
depicts the contours of the d2N/dydt and d2N/dzdt dis-
tributions over rapidity and time, and longitudinal
coordinate and time, respectively. In right panels one can
see that for the central region with |z| ≤ 15 fm the
emission of hadrons takes place till tπ ≈ 15 fm/c for pions
and tN ≈ 25 fm/c for nucleons.

Most pions are emitted in the central rapidity
window |y| ≤ 2 from the overlapping almond-shaped

zone. As the radial symmetry of this region is restored,
their elliptic flow becomes weaker. This part dominates
during the first 10−14 fm/c after the beginning of the
reaction, when the rapidity spectra of pions look like
emission from a thermal source. Nucleons are coming
from the overlapping zone as well and from the regions
of flying away spectators. This circumstance explains
why the ν2

N maintains its strength after t ≈ 12 fm/c. Thus,
the elliptic flow of hadrons has a multicomponent
structure, namely, (i) hydrodynamic flow, and (ii) non-
hydrodynamic flow caused by the particle splash from
the surface area, by the non-uniform emission of hadrons
from the spectators, and by the non-uniform absorption
of hadrons in spatially asymmetric dense matter.

Model predictions for the rapidity distribution of the
elliptic flow of hadrons at both RHIC energies,
130 AGeV and 200 AGeV, can be found, e.g., in [14,
25−27]. The time scales of the elliptic flow development
at these two energies are almost identical. In Fig. 4
model calculations are compared to the experimental
data measured by PHOBOS collaboration [6]. Here,
the elliptic flow of charged particles for the collisions
with centralities 0−15% (0.0 fm ≤ b < 2.3 fm), 15−25%
(2.3 fm ≤ b < 6.5 fm), and 25−50% (6.5 fm ≤ b < 9.2 fm)
is presented together with the resulting flow in
minimum bias events. The model reproduces the
measured signal pretty well, including the nearly flat
distribution at |η| ≤ 2 and quick fall of the elliptic flow
at |η| ≥ 2. The only discrepancy arises in semiperipheral
collisions at midrapidity range, where the data are
approximately 15% above the model results. The
double-hump structure of the elliptic flow in the QGSM
stems from the dynamics of particle rescattering, i.e.
the larger the number of hadronic collisions, the
stronger the flow (see [15] for the details). The
measured elliptic flow at RHIC violates this obvious
tendency. Namely, the PHOBOS ν2(η) data demon-
strate a clear peak at midrapidity, whereas their dN/dη

Fig. 3. Rapidity and z-distribution of the final state pions
(upper panels) and nucleons (bottom panels) vs. their last
interaction points.

Fig. 2. a − dN/dt distribution vs. time of their last interaction,
and b − elliptic flow of these particles for Au+Au collisions
with b = 8 fm at AGeV.

Fig. 4. Distribution of charged particles in Au+Au collisions
at AGeV for (a), (b), (c), and (d) minimum bias events. Full
symbols represent data [6], open symbols denote model
calculations.
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distribution [5] has a plateau within three units of
pseudorapidity. This problem should be clarified in the
future.

Conclusions

In summary, the features of the formation and develop-
ment of anisotropic flow in the microscopic quark-gluon
string model can be stated as follows. Directed and
elliptic flows of hadrons are formed not only during the
first few fm/c, but also during the whole evolution of
the system because of continuous freeze-out of particles.
Time evolutions of the mesonic flow and baryonic flow
are quite different. Directed flow of nucleons at RHIC
has a characteristic wiggle structure at midrapidity.
Pions are emitted mainly from the overlapping almond-
shaped zone of the reaction. As the symmetry of the
almond is restored, their elliptic flow decreases.
Nucleons are coming both from the overlapping area
and from the spectator domains. Freeze-out dynamics
for baryons and mesons is different and, therefore,
development of particle collective flow should not be
studied independently of the freeze-out picture. The
general trend in particle flow formation in microscopic
models at ultrarelativistic energies is that the earlier
mesons are frozen, the weaker their elliptic flow. In
contrast, baryons frozen at the end of the system
evolution have stronger flow.
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