Spatial ¹³⁷Cs distribution in forest soil

Agnieszka Dołhańczuk-Śródka, Tadeusz Majcherczyk, Marcin Smuda, Zbigniew Ziembik, Maria Wacławek

Abstract This work presents the distribution of radioactive caesium in several types of forest soil originating from the Lesisko reserve (Opole Province, Poland). Vertical distribution of ¹³⁷Cs isotope was determined in the profiles related to physicochemical properties of different types of soils and their location. Thickness of emerging genetic horizons, structure and morphology of soil profiles were determined. The highest ¹³⁷Cs activities were found in Of and A horizons. At the same time, there was a sudden drop of ¹³⁷Cs activity in mineral horizons of soil profiles. By analysis of caesium radioisotope content and its distribution in soil profiles significant correlations were observed between certain physicochemical properties (e.g. pH value, hydrolytic acidity, granulometric composition) of soils in selected forest habitats.

Key words forest • radioactive caesium • radioecology

A. Dołhańczuk-Śródka[∞], M. Smuda, Z. Ziembik, M. Wacławek[∞]
Physico-chemical Research Division, University of Opole,
4 B. Kominka Str., 45-032 Opole, Poland,
Tel.: +48 77 453 89 76, Fax: +48 77 455 91 49,
E-mail: agna@uni.opole.pl, Maria.Waclawek@uni.opole.pl

T. Majcherczyk
Chair of Chemical Physics
Institute of Chemistry,
University of Opole,
48 Oleska Str., 45-052 Opole, Poland

Received: 10 October 2005 Accepted: 18 January 2006

Introduction

The beginnings of radioecology date back to the 1950s and 1960s, when radioactive fallout originating from nuclear weapons tested in the atmosphere became the reason for the interest in occurrence of radioisotopes in the environment. Then, mainly the radioactive dose permissible for people and its effects on health were concerned; most of the research was focused on agroecosystems [15].

On April 26, 1986, because of the Chernobyl disaster, large quantities of radioactive substances were emitted to the atmosphere. Radionuclides released within 10 days in the form of gas, aerosols and dust spread according to weather conditions. As a result of the Chernobyl fallout, not only substantial areas of Europe were polluted, but also to a much smaller extent other continents [8, 10, 16].

During the first year after the Chernobyl fallout, high radioactivity level was also detected in the Western Europe in such products as vegetables and milk, and in products originating from natural or semi-natural ecosystems such as: game, mushrooms and berries. Then, the scope of radioecological research was significantly expanded, including natural ecosystems [22].

Almost 20 years after the Chernobyl fallout, elevated activity of ¹³⁷Cs is still detected in forests and wastelands. Forest soils are characterised by an unchanged system of genetic horizons in soil profile, where each horizon is distinguished by relatively monochrome colour, consistency, granulation, chemical constitution, quantity

and quality of organic matter and other properties. This fact causes that soil of forest complexes is a very good material for study of migration, change in chemical composition and vertical distribution of radioisotopes. This work discusses the content of ¹³⁷Cs isotope in

This work discusses the content of ¹³⁷Cs isotope in each genetic level of soils in relation to physicochemical properties of soil types and to location of the soils. Methods

The measurement of radiocaesium activity in samples of woodland soil was carried out by means of a gammaspectrometer with a germanium detector HPGe (Canberra) of high resolution: 1.29 keV (FWHM) at 662 keV and 1.70 keV (FWHM) at 1332 keV. Relative

Table 1. Comparison of the examined types of soils

No. of exposure	Type of soil	Location above sea level [m]	Genetic horizons	Thickness [cm]
1	Typical fallow soil located on clayey sand	268	$\begin{array}{c} \text{Ol} \\ \text{Of} \\ \text{A} \\ \text{ABbr} \\ \text{Bbr}_1 \\ \text{Bbr}_2 \\ \text{Cca} \\ \text{Rca} \end{array}$	$2-1 \\ 1-0 \\ 0-5 \\ 5-20 \\ 20-55 \\ 55-75 \\ 75-100 \\ >100$
2	Typical fallow soil located on clayey sand	275	Ol Of A E1et E2et Bt C/Bt Cca	3-2 2-0 0-6 6-35 35-60 60-70 70-85 >85
3	Brown limestone soil formed from shell limestone	283	Ol Of A B1br B2br Bbr/Cca Cca	3-2 2-0 0-7 7-20 20-30 30-37 >37
4	Brown limestone soil formed from Jurassic limestone	290	Ol Of A B1br B2br Bbr/Cca Rca	3-22-00-55-2525-4545-65>65
5	Typical fallow soil located on clayey sand	280	Ol Of Ah Eet Bt BtC C	3-2 2-0 0-6 6-32 32-60 60-105 >105
6	Typical fallow soil located on clayey sand	310	Ol Of Ah B1br B2br B3br C1 C2	2-1 1-0 0-5 5-32 32-55 55-78 78-120 >120
7	Typical fallow soil located on clayey sand	281	Ol Of Ah B1br B2br C Cca	2-1 1-0 0-7 7-38 38-73 73-110 >100

efficiency: 21.7%. Energy and efficiency calibration of the gamma spectrometer was performed with standard solutions, type MBSS 2 (Czech Metrological Institute, Praha), which covers an energy range from 59.54 keV (²⁴¹Am) to 1836.06 keV (⁸⁸Y). Geometry of calibration source and samples: Marinelli 450 cm³. Measuring process and analysis of spectra were computer controlled with the use of software GENIE 2000.

The following physicochemical properties of soils were determined, using methods generally applied in soil science:

- granulometric composition by the aerometric method according to the modified Prószyński method,
- soil acidity (pH) by the potentiometric method in 1 M KCl (at soil/solution ratio 1:10 (mineral soil) or 1:1.25 (organic soil) and in distilled water (1:10 or 1:2, respectively),
- hydrolytic acidity (Hh) by the Kappen method in 1 M CH₃COONa,
- total basic positive ions (S) by the Kappen method in 0.1 M HCl,

- percentage of $CaCO_3$ - by the Scheibler method.

The sampling area was the Lesisko nature reserve (Poland), covered by the partial protection, located within the National Scenic Park of St. Anna Mountain in Zdzieszowice commune, near the Żyrowa village. It

Table 2. Physicochemical properites - profile 1

belongs to the Strzelce Opolskie forest inspectorate. There are fallow, limestone soils in the Lesisko reserve. Seven soil profile exposures were carried out during field works.

The Lesisko reserve is almost completely overgrown with beech stand (of estimated age 130–165 years). Alder dominates only in some places on land depressions. There are larches, oaks, maples and sycamores as admixture species.

Results and discussion

Description of soil profiles is presented in Table 1. In this table denotations of each genetic (sub-)horizons was introduced in compliance with [11]: Ol – fresh litter sub-horizon; Of – fermentative sub-horizon; A – humus horizon; Ah – humus sub-horizon, contracting the humicated organic matter; Eet – eluvial sub-horizon; Bbr – enrichment sub-horizon; Cca – bedrock subhorizon; Rca – rocky basis.

Results of the measurements of ¹³⁷Cs activity and physicochemical properties of examined soils are presented in Tables 2–15. The data of radiometric measurements (Table 16) were calculated for May 1, 2004.

No.	Genetic horizons	Thickness [cm]	¹³⁷ Cs [Bq/kg d.m.]	KCl	pH H ₂ O	Hh	S Cmol(+)/kg	T g	V _s [%]	CaCO ₃ [%]
1	Ol	2–1	7.8 ± 0.4	5.25	6.15	41.60	51.20	92.80	55.2	_
2	Of	1–0	79 ± 1	5.19	6.07	34.80	61.20	96.00	63.8	_
3	А	0–5	34.7 ± 0.3	4.96	6.05	4.50	4.20	8.70	48.3	_
4	ABbr	5-20	0.2 ± 0.01	6.51	7.40	0.80	10.95	11.75	93.2	-
5	Bbr_1	20-55	-	7.02	7.81	0.21	15.55	15.76	98.7	_
6	Bbr ₂	55–75	_	7.12	7.82	0.41	_	_		0.8
7	Cca	75–100	_	7.19	7.99	0.37	_	_		0.8
8	Rca	>100	_				Rubble			79.8

 pH_{KCl} and $pH_{H_{2}O}$ – the reaction values determined for KCl and aqueous solutions, respectively.

Hh – hydrolytic acidity. S – sum of basic exchangeable cations. T – sorption complex capacity; T = S + Hh.

 V_s – degree of sorption complex saturation by basic cations; $V_s = S/T$.

No.	Genetic horizons	Thickness [cm]	¹³⁷ Cs [Bq/kg d.m.]	KCl	pH H ₂ O	Hh	S Cmol(+)/k	T g	V_s [%]	CaCO ₃ [%]
1	Ol	3–2	6.2 ± 0.4	5.25	6.15	44.00	45.60	89.60	50.9	_
2	Of	2-0	90 ± 1	4.87	6.02	57.60	44.00	101.60	43.3	_
3	А	0–6	31.89 ± 0.4	4.28	3.52	8.18	2.30	10.48	21.9	_
4	E1et	6–35	0.16 ± 0.04	4.45	4.08	3.17	1.85	5.02	36.9	-
5	E2et	35-60	-	4.58	4.14	2.96	1.75	4.71	37.2	-
6	Bt	60-70	_	5.42	4.41	2.33	7.90	10.23	77.2	-
7	C/Bt	70-85	_	5.54	4.35	2.10	8.15	10.25	79.5	-
8	Cca	>85	-	7.76	7.18	0.41	-	-		6.50

Table 3. Physicochemical properties – profile 2

Meanings of denotations are the same as in Table 2.

No.	Genetic horizons	Thickness [cm]	¹³⁷ Cs [Bq/kg d.m.]	KCl	pH H ₂ O	Hh	S Cmol (+)/kg	T g	V_S [%]	CaCO ₃ [%]
1	Ol	3–2	6.4 ± 0.3	5.33	6.40	35.60	55.60	91.20	61.0	_
2	Of	2-0	79.9 ± 0.8	5.22	6.38	34.40	37.60	72.00	52.2	_
3	А	0–7	91 ± 1	3.57	4.12	31.00	4.55	35.55	12.8	-
4	B1br	7–20	0.2 ± 0.03	3.95	4.51	4.89	1.60	6.49	24.7	-
5	B2br	20-30	-	4.06	4.69	5.80	1.75	7.55	23.2	-
6	Bbr/Cca	30-37	-	4.68	5.66	6.40	-	_		7.5
7	Cca	>37	_				Rubble			78.5

Table 4. Physicochemical properties - profile 3

Meanings of denotations are the same as in Table 2.

 Table 5. Physicochemical properties – profile 4

No.	Genetic horizons	Thickness [cm]	¹³⁷ Cs [Bq/kg d.m.]	KCl	pH H ₂ O	Hh	S Cmol(+)/kg	T g	V _s [%]	CaCO ₃ [%]
1	Ol	3–2	7.0 ± 0.4	5.33	6.26	34.00	48.80	82.80	58.9	_
2	Of	2–0	99 ± 1	5.34	6.13	38.00	47.80	85.80	55.7	-
3	А	0–5	99 ± 1	3.43	3.95	14.40	6.05	20.45	29.6	-
4	B1br	5-25	0.36 ± 0.04	3.63	4.88	7.65	1.95	9.60	20.3	-
5	B2br	25-45	-	3.78	4.92	6.42	3.50	9.92	35.3	-
6	Bbr/Cca	45-65	-	6.03	6.83	1.80	_	_	-	4.5
7	Rca	>65	-				Rubble			59.8

Meanings of denotations are the same as in Table 2.

The soil samples studied differ significantly in physicochemical properties (Tables 2–15).

On the basis of the field and laboratory research, two sub-types of soils were determined in the examined area: brown limestone soils and typical fallow soils. The morphology and physicochemical properties of the examined profiles are mainly dependent on the properties of their bedrock.

The pH value of examined soils is in a wide range that results chiefly from the property of bedrocks and the influence of other soil-forming factors, principally flora and climate.

Aerosols and dust fractions with predomination of clayey dust are most abundant in the examined soil profiles. Brown limestone soils in deeper layers are mainly formed from light or medium clays. Humus and subhumus horizons of such soils are characterised by the grain-size composition of clayey sands or sandy dusts. The framework (skeletal parts) is formed by pieces of limestone on the deepest horizon.

On the basis of the research carried out, considerable differences of ¹³⁷Cs activity (especially for Of) in between the soil horizons were identified. The highest activity was found in the organic horizons Of and A. In the deeper, mineral soil horizons (B, C), practically no presence of ¹³⁷Cs was detected. Low ¹³⁷Cs activity was identified in Ol sub-horizon. The range of measured ¹³⁷Cs activities for Ol sub-horizon was within 0.8–11.9 Bq/kg d.m. This means that the low humificated plant

No.	Genetic horizons	Thickness [cm]	¹³⁷ Cs [Bq/kg d.m.]	KCl	pH H ₂ O	Hh	S Cmol(+)/k	g T	V_S [%]	CaCO ₃ [%]
1	Ol	3–2	5.6 ± 0.3	5.05	5.89	48.35	34.85	83.20	41.9	_
2	Of	2-0	33 ± 5	4.27	4.91	61.20	25.80	87.00	29.7	-
3	Ah	0–6	136 ± 1	3.83	4.65	30.40	4.65	35.05	13.3	-
4	Eet	6-32	8.0 ± 0.5	4.40	4.96	5.65	0.05	5.70	0.9	-
5	Bt	32-60	-	4.23	5.05	9.90	2.45	12.35	19.8	-
6	BtC	60–105	-	4.49	5.27	3.10	5.50	8.60	64.0	-
7	С	>105	-	4.48	5.35	2.20	5.00	7.20	69.4	-

Table 6. Physicochemical properties – profile 5

Meanings of denotations are the same as in Table 2.

No.	Genetic horizons	Thickness [cm]	¹³⁷ Cs [Bq/kg d.m.]	KCl	pH H ₂ O	Hh	S Cmol(+)/k	g T	V_S [%]	CaCO ₃ [%]
1	Ol	2–1	0.80 ± 0.04	5.03	5.89	52.30	34.20	86.50	39.5	_
2	Of	1–0	128 ± 1	4.15	5.12	68.40	42.20	110.60	38.2	_
3	Ah	0–5	134 ± 1	3.84	4.62	30.30	6.50	36.80	17.7	-
4	B1br	5-32	0.01 ± 0.01	4.33	5.27	7.05	2.85	9.90	28.8	-
5	B2br	32–55	_	4.16	5.19	10.65	3.45	14.10	24.5	-
6	B3br	55-78	_	4.53	5.54	5.40	6.60	12.00	55.0	-
7	C1	78–120	_	4.64	5.46	2.20	7.75	9.95	77.9	-
8	C2	>120	-	4.75	5.92	1.85	8.60	10.45	82.3	-

Table 7. Physicochemical properties - profile 6

Meanings of denotations are the same as in Table 2.

Table 8. Physicochemical properties - profile 7

No.	Genetic horizons	Thickness [cm]	¹³⁷ Cs [Bq/kg d.m.]	KCl	pH H ₂ O	Hh	S Cmol(+)/kg	T g	V _s [%]	CaCO ₃ [%]
1	Ol	2–1	11 ± 6	4.88	5.48	32.40	57.80	90.20	64.1	_
2	Of	1-0	38.5 ± 0.6	4.03	5.05	64.00	40.80	104.80	38.9	_
3	Ah	0–7	118 ± 1	3.91	4.29	23.70	7.35	31.05	23.7	_
4	B1br	7–38	0.8 ± 0.2	4.22	4.74	5.10	5.59	10.69	52.3	_
5	B2br	38–73	-	4.32	4.85	3.10	1.35	4.45	30.3	_
6	С	73–110	-	4.69	5.78	1.85	5.30	7.15	74.1	-
7	Cca	>110	-	6.78	7.68	0.20	_	_		34.8

Meanings of denotations are the same as in Table 2.

Fig. 1. Horizon denotations in soil profiles.

materials have a small sorption capacity. However, the presence of ¹³⁷Cs in the sub-horizon Ol reflects continuous circulation of the isotope in the soil–plants–soil system [7, 14, 21].

Caesium circulation between the elements of woodland ecosystem lead to almost complete preservation of caesium in a ten-centimetre thick surface soil layer. The explanation is supported by the literature data [1–3, 9, 12, 17–19] and our earlier research [7, 21].

The horizon denotation in soil profile was presented in Fig. 1, while the 137 Cs activities in all 7 soil profiles were shown in Fig. 2.

Fig. 2. ¹³⁷Cs activity in all 7 soil profiles studied.

Z	Genetic	Thickness	Skeletal				Fine e	arth			
	horizons	[cm]	parts [%]	Ø 1.0–0.5 mm [%]	Ø 0.5-0.25 mm [%]	Ø 0.25–0.1 mm [%]	Ø 0.1–0.05 mm [%]	Ø 0.05-0.02 mm [%]	Ø 0.02-0.005 mm [%]	Ø 0.005-0.002 mm [%]	Ø <0.002 mm [%]
-	IO	2-1					Organic	c matter			
7	Of	1-0									
ю	A	0-5	1.6	15	23	22	23	16	1	0	0
4	ABbr	5-20	3.4	15	28	21	16	4	5	1	9
5	B1br	20-55	1.8	17	30	23	10	8	5	1	9
9	B2br	55-75	1.6	16	30	23	19	8	5	1	6
٢	Cca	75–100	3.2	12	22	12	18	7	5	ω	21
×	R	>100	48.8				Rı	ubble			
Ta				II – hioine 7							
No.	Genetic	Thickness	Skeletal				Fine e	arth			
	horizons	[cm]	parts [%]	Ø 1.0– 0.5 mm [%]	[Ø 0.5–0.25 mm [%]	Ø 0.25–0.1 mm [%]	Ø 0.1–0.05 mm [%]	Ø 0.05–0.02 mm [%]	Ø 0.02–0.005 mm [%]	Ø 0.005–0.002 mm [%]	Ø <0.002 mm [%]
1	IO	3–2					Organic	: matter			
0	of	2-0									
б	А	00	0.9	5	20	15	29	24	4	2	1
4	Elet	6-35	1.4	13	25	15	21	11	6	1	S
S	E2et	35-60	1.3	11	28	18	27	7	4	0	5
9	Bt	60-70	1.2	11	23	17	21	9	4	0	18
7	C/Bt	70-85	2.1	11	22	17	23	7	3	0	17
8	Cca	>85	4.6	8	14	18	30	14	11	0	S

S74

 $\frac{8 \quad \text{Cca} \qquad >85 \qquad 4.6}{\varnothing - \text{granulometric fraction diameters.}}$

No.	Genetic	Thickness	Skeletal				Fine e	arth			
	horizons	[cm]	parts [%]	Ø 1.0–0.5 mm [%]	Ø 0.5-0.25 mm [%]	Ø 0.25–0.1 mm [%]	Ø 0.1–0.05 mm [%]	Ø 0.05–0.02 mm [%]	Ø 0.02–0.005 mm [%]	Ø 0.005–0.002 mm [%]	Ø <0.002 mm [%]
-	Ō	3–2					Organic	c matter			
7	Of	2–0									
Э	$\mathbf{A}\mathbf{h}$	$^{-0}$	0.3	12	20	19	10	31	8	0	0
4	Blbr	7–20	2.7	13	24	22	11	11	13	2	4
5	B2br	20–30	2.1	15	23	20	6	12	12	2	8
9	Bbr/Cca	30–37	3.2	10	13	14	8	11	12	Э	29
٢	Rca	>37	78.0				Ru	ıbble			
No.	Genetic	Thickness	Skeletaj				Fine e	arth			
	horizons	[cm]	parts [%]	Ø 1.0–0.5 mm [%]	Ø 0.5–0.25 mm [%]	Ø 0.25–0.1 mm [%]	Ø 0.1–0.05 mm [%]	Ø 0.05-0.02 mm [%]	Ø 0.02–0.005 mm [%]	Ø 0.005–0.002 mm [%]	Ø <0.002 mm [%]
1	Ю	3-2					Organic	c matter			
0	Of	2–0									
б	Ah	0-5	1.1	10	16	19	17	28	6	1	0
4	Blbr	5-25	0.1	10	18	17	13	13	14	5	10
5	B2br	25-45	0.7	6	18	17	11	14	11	4	16
9	BbrC	45-65	1.5	8	12	11	8	8	6	Э	41
٢	Rca	>65	52.6				Ru	ıbble			

 \emptyset – granulometric fraction diameters.

Tal	ble 13. Grai	nulometric co	mposition	n – profile 5							
No.	Genetic horizons	Thickness [cm]	Skeletal parts [%]	<u>Ø 1.0–0.5 mm</u> [%]	Ø 0.5–0.25 mm [%]	Ø 0.25–0.1 mm [%]	<u>Fine ca</u> Ø 0.1–0.05 mm [%]	rth Ø 0.05-0.02 mm [%]	Ø 0.02-0.005 mm [%]	Ø 0.005-0.002 mm [%]	Ø <0.002 mm [%]
-	ō	3–2					Organic	matter			
0	Q	2–0)				
б	Ah	<i>L</i> -0	0.0	S	7	11	26	36	13	2	0
4	Eet	7–32	0.0	ю	9	8	17	36	20	2	8
S	Bt	32-60	0.0	2	ю	9	18	34	14	С	20
9	BtC	60-105	0.0	б	9	8	18	32	13	2	18
٢	C	>105	0.0	4	9	11	21	33	11	2	12
No.	. Genetic horizons	Thickness [cm]	Skeletal parts [%]	<u>[Ø 1.0–0.5 mm</u> [%]	Ø 0.5-0.25 mm [%]	Ø 0.25–0.1 mm [%]	Fine es Ø 0.1–0.05 mm [%]	arth Ø 0.05-0.02 mm [%]	Ø 0.02-0.005 mm [%]	Ø 0.005-0.002 mm	Ø <0.002 mm
	Ī	2-1					Organic	matter			
0	Of	1–0									
\mathfrak{c}	Ah	0-8	0.0	4	Ś	9	36	34	6	7	4
4	B1br	8–32	0.0	4	Ś	7	21	32	17	7	12
5	B2br	32-55	0.0	4	S	9	18	36	12	б	16
9	B3br	55-78	0.0	ŝ	4	8	25	33	6	2	16
7	CI	78-120	0.0	2	S	11	30	32	8	0	12
8	3	>120	0.0	5	б	5	22	43	12	1	12

S76

 \emptyset – granulometric fraction diameters.

			•	•							
No.	Genetic	Thickness	Skeletal				Fine ea	urth			
	horizons	[cm]	parts [%]	Ø 1.0–0.5 mm [%]	Ø 0.5–0.25 mm [%]	Ø 0.25–0.1 mm [%]	Ø 0.1–0.05 mm [%]	Ø 0.05–0.02 mm [%]	Ø 0.02–0.005 mm [%]	Ø 0.005–0.002 mm [%]	Ø <0.002 mm [%]
-	ō	2-1					Organic	matter			
0	Of	1-0									
б	Ah	0^{-2}	0.0	4	8	6	30	37	6	1	2
4	B1br	7–38	0.0	8	13	13	17	27	14	1	7
5	B 2br	38-73	0.0	6	19	17	12	22	13	c	5
9	C	73-110	0.0	9	16	20	17	14	8	3	16
7	Cca	>110	41.8	6	12	13	10	12	13	6	22
Ø	- granulon	netric fraction	diameters.								

d.m.
l/kg
ğ
horizons
genetic
n the
$^{7}Cs o$
13
of
activities
Average
<u>[</u> 0
[e]
ab

Table 17. Correlation coefficient values for the dependence between the ¹³⁷Cs activity and some physico-chemical properties on Ol, Of and A horizons (p = 0.05)

 -0.756^{*}

 0.880^{*} 0.2220.355

> 0.895^{*} -0.115

> > -0.499

Q ō

A

* Significant correlations. -0.788^{*}

 0.820^{*} 0.347

 0.805^{*} 0.436-0.273

 -0.811^{*}

0.512-0.5060.350

-0.3080.378

 V_{s}

Ы

S

ЧН

 $^{+}$ H

 $pH_{\rm H_{2O}}$

 $pH_{\rm KCl}$ -0.1510.313

)		
	Minimum	Maximum	Average
IO	0.8	11.9	6.53
Of	33.3	128.0	78.03
A	31.9	136.3	89.6

en	on	
we	siti	
bet	dr	
'n	con	
atic	цс	
rel	net	
e	llor	
r th	ant	
fo	1 P	
les	soi	
∕alı	the	
lt v	nd	
cier	n a	
ffi	rizc	
coe	ho	
u o	nus	
atic	hur	
rel	he	
OL	int	
	ity	
18	ctiv	2
le.	s "a	0.0
ab	ŭ	I
Η	Ξ	d

1.0
1.0

Significant correlations.

Table 16 presents the average ¹³⁷Cs activities on the same genetic horizons of profiles.

A diverse soil ¹³⁷Cs activity was found depending on the height above of the sea level of the place of sampling. The lowest activity was detected in the upper part of the slope (except for site no. 7), whereas the highest – in the lower part. It seems that the reason for caesium accumulation in the lower part of the slope might be the deposition of the soil material carried off from the slope. Similar observations were made in [4].

The determined caesium isotope content and its distribution in profiles, correlated significantly with certain physicochemical properties of the soils studied (Tables 17 and 18).

The statistical analysis of the data obtained showed linear dependencies between some of the studied parameters.

The determined ¹³⁷Cs content and its distribution in profiles was correlated significantly and marked with asterix (*) with certain physicochemical properties of the soils studied (Tables 17 and 18). But the mutual correlations between soil properties were also observed. There were found statistically significant correlations between pH_{KCl} , $pH_{H_{2O}}$ and Hh parameters in Of and Ol horizons. Additionally, for the Ol horizon a significant correlation between Hh and *S* parameters was observed.

In humus A horizon, only a $pH_{H_{2O}}$ and Hh correlation was found, but exclusion of the point representing the lowest pH of soil (Table 2, horizon ABbr) was needed. The statistically significant correlations were found between granulometric parameters of soil in this horizon. Taking only one of the granulometric parameters, the remaining two ones could be computed.

Statistical analysis has shown that the ¹³⁷Cs content in Ol horizon depended significantly on Hh, S and V_S parameters (Table 17). For the Of horizon, no significant correlations between the ¹³⁷Cs activity and the soil physicochemical properties have been noticed. In humus horizon (A), significant dependences between the ¹³⁷Cs activity and Hh, T parameters were found but negative correlations among ¹³⁷Cs activity and pH_{KCl} and V_S parameters were also determined In the humus horizon with greater sorption capacity, the considerably greater ¹³⁷Cs activity was observed. In humus horizon (A), significant dependences between the ¹³⁷Cs activity and soil granulometric composition was also found (Table 18). With the increase in percentage of dust fraction the activity of ¹³⁷Cs was increased too.

Conclusions

- The ¹³⁷Cs content in soil profiles from the Lesisko reserve is highly diversified. Relatively high content of ¹³⁷Cs was determined for Of and A horizons. A significant decrease of ¹³⁷Cs activity in successive levels of the profile was found.
- The ¹³⁷Cs activities measured in the Lesisko reserve are relatively low as compared with high activities detected in the nearby area of Opole Anomaly [5, 6, 13, 20].

The statistical analysis showed that there were significant correlations between certain physico-

chemical properties (e.g. Hh, *S*, *T*, granulometric composition) of soils of selected forest habitats.

 Forest soils are a valuable source of information regarding distribution of anthropogenic isotopes in the soil profile.

References

- Arapis GD, Karandinos MG (2004) Migration of ¹³⁷Cs in the soil of sloping semi-natural ecosystems in Northern Greece. J Environ Radioact 77:133–142
- Arnalds O, Cutshall N, Nielsen G (1989) Cesium-137 in Montana soils. Health Phys 57;6:955–958
- Baeza A, Paniagua JM, Rufo M, Barandica J, Sterling A (1999) Dynamics of ⁹⁰Sr and ¹³⁷Cs in a soil-plant system of a mediterranean ecosystem. Radiochim Acta 85:137–141
- Chełmiński W, Święchowicz J, Mietelski W, Klimek M (1995) Natural radionuclides in soils of northeastern Poland. Zeszyty Naukowe Uniwersytetu Jagiellońskiego MCLXII, Prace Geograficzne 100:125–141
- Dołhańczuk-Śródka A, Kiczma B, Majcherczyk T, Wacławek M (2000) ¹³⁷Cs in forest of the Opole region. Chem Inż Ekol 7;12:1309–1318 (in Polish)
- Dołhańczuk-Śródka A, Kiczma B, Wacławek M (2002) The evaluation of the ¹³⁷Cs soil of the Łambinowice surroundings. Chem Dydakt Ekol Metrol 7;1/2:69–71 (in Polish)
- Dołhańczuk-Śródka A, Wacławek M, Wacławek W (2003) Influence of physical and chemical agents on migration of ¹³⁷Cs in woodland soil. Ann Polish Chem Soc 2:746–751
- 8. Gudiksen P, Harvey T, Lange R (1989) Chernobyl source term, atmospheric dispersion and dose estimation. Health Phys 57;5:697–706
- Huh CA, Su CC (2004) Distribution of fallout radionuclides (⁷Be, ¹³⁷Cs, ²¹⁰Pb and ^{239,240}Pu) in soils of Taiwan. J Environ Radioact 77:87–100
- 10. Jagielak J, Biernacka M, Grabowski D, Henschke J (1996) Changes in the radiological situation of Poland 10 years after the Chernobyl accident. Państwowy Instytut Ochrony Środowiska, Warsaw (in Polish)
- Konecka-Betley K, Czępińska-Kamińska D, Janowska E (1996) Systematics and cartography of soils. Wydawnictwo SGGW, Warsaw (in Polish)
- 12. Lindner G, Drissner J, Herrmann T *et al.* (1994) Seasonal and regional variations in the transfer of cesium radionuclides from soil to roe deer and plants in a prealpine forest. Sci Total Environ 157:189–196
- Majcherczyk T, Wacławek W, Kudłacz M (2003) Activity evaluation of radionuclides in the forest-area Lipowa (Opole Province, Poland). In: Proc of the XII Central Eur Conf ECOpole'03, Jamrozowa Polana–Hradec Králové, Poland–Czech Republic, pp 241–244
- Mamikhin SV, Tikhomirov FA, Shcheglov AI (1997) Dynamics of ¹³⁷Cs in the forest of the 30-km zone around the Chernobyl nuclear power plant. Sci Total Environ 193:169–177
- 15. Nimis P (1996) Radiocesium in plants of forest ecosystems. Studia Geobotanica 15:3–49
- Persson Ch, Rohde H, De Geer L (1987) The Chernobyl accident – a meteorological analysis of how radionuclides rached and were deposited in Sweden. Ambio 16;1:20–31
- Pietrzak-Flis Z, Radwan I, Rosiak L (1995) Migration of radiocesium in the forest ecosystem. In: Proc of the X Scientific Meeting of the Polish Radiation Research Society, Warsaw, Poland, pp 108–109

- Rosén K, Öborn I, Lönsjö H (1996) Migration of radiocaesium in Swedish soil profiles after the Chernobyl accident 1987–1995. In: Proc of the XI Congress of the Nordisk, Reykjavik, Iceland, p 11
- Schimmack W, Flessa H, Bunzl K (1997) Vertical migration of Chernobyl – derived radiocesium in Bavarian grassland soils. Naturwissenschaften 84:204–207
- 20. Štrzelecki R, Wołkowicz S, Lewandowski P (1994) Accumulation of radiocesium in Poland. Przegląd Geologiczny 42;1:3–8 (in Polish)
- Wacławek M, Dołhańczuk-Śródka A, Wacławek W (2004) Radioisotopes in environment. In: Dudzińska MR, Pawławska M (eds) Pathways of pollutants and mitigation strategies of their impact on the ecosystems. Monografie Komitetu Inżynierii Środowiska PAN. Vol. 27, pp 245–256
- Vol. 27, pp 245–256
 22. Ward G, Keszthelyi Z, Kanyar B, Kralovanszkyi V, Jonson J (1989) Transfer of ¹³⁷Cs to milk and meat in Hungary from Chernobyl fallout with comparisons of worldwide fallout in the 1969s. Health Phys 57;4:587–592