A radiographic facility at the Soltan Institute for Nuclear Studies (SINS) at Święk, Poland

Abstract This paper describes the 6 MeV linac electron accelerator facility now operating at SINS, Święk, Poland. The accelerator can work in both the electron or X-ray photon mode. The photon beam may be used for non-destructive radiographic investigations on a laboratory scale and, with some modifications, for industrial purposes, as well. As the accelerator’s removable tungsten e/X converter is placed outside, the beam vacuum window, an external electron beam is also accessible. The design stages of the accelerator’s construction are described, and examples of measurements and radiographic pictures are also presented.

Key words linear accelerator • electron RF accelerator • photon beam • radiography

Introduction

At present, the IAEA estimates that worldwide there are more than 15,000 small energy (up to 20 MeV) accelerators, most of which are electron linacs. They are used extensively for beneficial purposes, in medical, industrial, agricultural, research and educational applications.

In Poland, the number of electron accelerator units is far below that of most industrial nations, and almost all of them are radio-therapeutic units. However, SINS has the comprehensive knowledge and technical capacity to build accelerators for industrial applications.

The radiographic facility built and tested over the last two years in the Accelerator Physics and Technology Department at SINS consists of electron accelerator and e/X conversion units placed in a radiation shielded concrete room. The e/X conversion area is equipped additionally with 10 cm lead shields surrounding the conversion head and exposure compartment. The SINS electron accelerator is based on a linear RF accelerating structure composed of 11 on-axis coupled cells working in the S band at a frequency of 3 GHz.

The accelerator is excited in the so-called π/2 mode, where dimensional tolerances are strongly relaxed compared to the standard π mode. Electrons are injected from the thermionic diode gun pulsed together with an RF power source exciting the accelerating structure.

The accelerated electron beam passes into the air through a thin (40 μm stainless steel) vacuum window. The water-cooled, removable e/X conversion head holding the tungsten target can be placed few
millimetres downstream from this window. Thus, the facility can be operated in either the electron beam mode or X-ray beam mode depending on demand.

Accelerator design

The basic components and parameters of the accelerator are listed in Table 1. The flaw detectability given in Table 1 was determined approximately according to the definition of flaw detectability. We have prepared steel cylinder, 100 mm in height and 150 mm in diameter. On the one base of the cylinder we made thin rows with different depths: 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4 mm. The width of each row was fixed at 1.5 mm. This pattern was exposed to the X-ray beam along the axis of the cylinder and the radiographs of these rows were detected on a Kodak Industrex A-400 film. The flaw detectability was calculated as ratio of the minimum depth of the visible row to the thickness of cylinder. During the future examination of industrial samples the image quality verification using IQI according to EN462-2 is predicted.

Design calculations and optimisation

A thorough computational optimisation of the electron gun and successive RF accelerating structure preceded the construction of the accelerator. In order to obtain the optimum shapes of structures, computational DC [4] and RF [2] codes were checked with beam dynamics codes developed in our Institute. Samples of final computational results are presented in Figs. 1, 2 and 3.

RF accelerating structure and auxiliaries

Components of the RF accelerating structures are fabricated from a certified OFHC copper. The guaranteed Cu content of this material exceeds 99.995%, while its oxygen content is below 1.0 ppm.

Two fabricating options were available: brazing in a vacuum or brazing in a hydrogen atmosphere. In the

Table 1. Accelerator components and parameters

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron gun</td>
<td>Diode, cylindrical Pierce geometry type, thermionic tungsten cathode</td>
</tr>
<tr>
<td>Energy/intensity</td>
<td>30 keV/200 mA in pulse 4 µs</td>
</tr>
<tr>
<td>Variable repetition</td>
<td>50–300 Hz</td>
</tr>
<tr>
<td>RF accelerating structure</td>
<td>11 cells, on axis coupled π/2 mode</td>
</tr>
<tr>
<td>Resonant frequency</td>
<td>2997.85 MHz</td>
</tr>
<tr>
<td>Quality factor</td>
<td>12,500</td>
</tr>
<tr>
<td>Average accelerating field</td>
<td>15 MV/m (peak 23 MV/m)</td>
</tr>
<tr>
<td>RF power lost to walls</td>
<td>1.2 MW in 4 µs pulse</td>
</tr>
<tr>
<td>Nominal energy</td>
<td>6 MeV</td>
</tr>
<tr>
<td>Electron current</td>
<td>100 mA in pulse, 0.1 mA average</td>
</tr>
<tr>
<td>Structure length (total)</td>
<td>50 cm</td>
</tr>
<tr>
<td>Working temperature</td>
<td>40 ± 1°C</td>
</tr>
<tr>
<td>Beam focusing and steering</td>
<td>Solenoid surrounding the accelerating structure: iron screened 10 cm inner diam coil of 45 cm length; maximum attainable axial magnetic field 700 Gs Magnetic quadrupole doublet on structure output Beam position correctors: two pairs of small coils underneath the solenoid coil</td>
</tr>
<tr>
<td>e/X conversion unit (tungsten target)</td>
<td>Electron beam energy: 6 MeV</td>
</tr>
<tr>
<td>– radiographic parameters</td>
<td>Focal spot: 2 mm maximum</td>
</tr>
<tr>
<td></td>
<td>X-ray dose rate: 500 R/min/m</td>
</tr>
<tr>
<td></td>
<td>Flaw detectability: 0.4%</td>
</tr>
</tbody>
</table>

Fig. 1. Computed phase acceptance of the accelerating structure: 23 MV/m amplitude corresponds to 15 MV/m mean field.

Fig. 2. Electron beam transmission through RF accelerating structure at optimal input phase 95° RF.
In the electron mode, measurements of the electron beam spectra are made using a simple magnetic analyser. First, the electron beam emerging from the accelerating structure is deflected by 60 degrees in the magnetic field of the analyser. Then, after passing through the energy defining slit, it is collected in the Faraday cup. The current of the Faraday cup is converted to a voltage signal and measured with an oscilloscope. Electron beam energy is determined by the relationship between magnetic field intensity and energy. The result is verified by calculations of electron beam trajectories in the magnetic gap, taking into account fringe effects. In Figure 6, the shape of the spectrum is drawn for a magnetron parameter of $U_m = 4$ kV, with an electron beam of $I_e = 6$ mA in 4 μs pulse.

The main difference between the theoretical and measured spectrum is broadening of the measured spectrum compare to the theoretical one. The broadening of the experimental spectrum is caused by several reasons:
- finite size of the electron beam,
- finite size of input slit of the magnetic analyzer (limiting aperture),

A photograph of the accelerator with its RF, vacuum and cooling systems is shown in Fig. 5.
− finite size of output slit of magnetic analyzer (energy definition slit),
− pulsations of the current in magnetic coils,
− magnetic field measurements errors (magnetization curve),
− electronic noise due to RF magnetron generator.

Monte Carlo calculations of the photon beam

The Monte Carlo code BEAMnrc/EGSnrc [5], was used to calculate spectral distribution, mean energy distribution and fluence vs. position for a photon beam in the radiographic accelerator.

Calculations were done for 7×10^7 particles, using an electron transport cutoff of $ECUT = 0.7$ MeV, and a photon transport cutoff of $PCUT = 0.01$ MeV. A value of 0.25 was used to obtain the lowest possible fractional electron energy loss per step (ESTEPE). Relativistic spin effects were included in nuclear elastic scattering to obtain accurate calculations near high-Z interfaces. The electron step algorithm PRESTA-II (an essential requirement for accurate high-Z interface simulations) and the exact boundary crossing algorithm, BCA PRESTA-I, were also implemented.

The source type of incident electron beam in the BEAMnrc code was a Parallel Circular Beam with 2-D Gaussian X-Y distribution. The value of FWHM in the Gaussian distribution was set at 2 mm. The energy spectrum of the electron beam was set from 2.3 to 6.25 MeV (see Fig. 3). A tungsten target of 6 mm diameter and 1 mm thickness was used as the e^-/X conversion unit. The influence of different energy spectra of electrons was then investigated.

Phase space files (PHSP) were generated for scoring planes at different distances from the tungsten target. The PHSP contain data relating to particle position, direction, charge, and other key parameters for every particle crossing the scoring plane. The BEAMDP program was used for processing phase space files and to derive spectral distribution, mean energy distribution and fluence vs. position of a photon beam in air.

Figures 7 and 8 show the energy spectrum and fluence vs. position of a photon beam for a field area with a radius of 10 cm, at a distance of 100 cm from the tungsten target. Photon fluence is normalised by the energy bin width, number of incident particles, and the area of the field being considered. The mean energy of photon beam changes was from 1.18 MV to 1.14 MV, at a distance of 10 cm from the beam axis.

Radiographic pictures

A Kodak Industrex AA 400 film was chosen for radiographic images. Experiments were performed with different exposures and filters to obtain good radiographic contrast. The radiographic images of two different specimens are presented in Figs. 9 and 10. Flaw detectability was 0.4%. In radiographic practice, this term denotes the ratio of the thickness of the smallest detectable flaw to the thickness of the object under inspection, expressed as a percentage.
Conclusions

The SINS 6 MeV electron accelerator unit, based on a standing wave S-band resonant structure, was built successfully and has passed preliminary tests. Since it is foreseen primarily as a radiographic device, a number of steps have been taken to optimise its advantages in these applications. After optimisation of accelerator parameters, the radiographic images of different objects on Kodak films are of excellent quality.

The electron beam has been used, as well. The Research Team S1 (Dosimetry of Mixed Radiation) has used our 6 MeV electron beam to study the behaviour and ion collection efficiency of gaseous ionisation chambers used in dosimetry [3]. Apart from radiography [1], the 6 MeV accelerator may also prove to be a very useful research device for detector calibration, drug and explosive detection.

References