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Introduction

Carbon diffusion in iron is among the best known cases
of impurity migration in solids. For great many years, it
has provided what is believed to be a textbook example
for the Arrhenius temperature dependence of a diffusion
coefficient

(1) D(T) = D0
.exp(−Em/kBT)

extending over 7 decades of magnitude [9, 11, 12, 14].
Here D0 is the frequency factor and Em is the migration
barrier. For a reference, see Fig. 4.7 in Wert and
Thomson’s monograph [14] where D0 = 2 × 10−5 m2/s
and Em = 0.9 eV. It has also been taken for granted
that the diffusion mechanism involves classic jumps
across well-defined interstitial sites in the bcc iron
lattice. If so, the whole thermal activation would go to
overcoming the migration barrier rather than splitting
it nearly equally between migration and vacancy
formation.

The classic theory leads to

(2) D0 = f(ζ /6)d2ν

where ζ is the coordination number at the jump site
(e.g. ζ = 4 for a vacancy jump in the bcc lattice), d is
the jump distance and ν is the attempt frequency of the
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vibrating atom. The quantity km(T) = ν .exp(−Em/kBT)
is the classic transition rate, i.e. the number of over-
barrier jumps per unit time. The factor f accounts for
the probability that the migrating atom does not jump
back to the original site after making a jump forward.

We note in passing that a classical frequency factor
D0 = 2 × 10−5 m2/s implies that the vibrational frequency
coupled to the diffusing carbon in iron is in excess of
most vibrational frequencies observed so far in poorly
conducting solids. Indeed with d = 2.48 Å (the nearest-
neighbor separation in α-iron) and ζ = 4 we get fν =
4.88 × 1014 s−1. Even with f ~ 1 we arrive at ω ~ 2 eV!
We conclude that the frequency factor D0 may not be
accounted for by the classic theory.

Nevertheless, as our own analysis below suggests
carbon diffusion is likely to occur via the tetrahedral
sites. This changes the effective squared jump distance
d2 by a factor of 12 which lowers the attempt frequency
to 1360 cm−1, close to the Raman frequency of carbon
in diamond.

Yet, the agreement between classic theory and
experiment has recently been found essentially
questionable [4]. As the measurement range has been
extended down to lower temperatures beyond the classic
range, it has become clear that the carbon difussion
coefficient at 4% C in α-iron actually bends into another
branch in which it is very weakly dependent on the
temperature, if at all. The apparent activation energy
of the lower temperature branch below 78 K being so
low (< 2 meV), it is hardly attributable to any reasonable
migration hindering energy barrier so that the branch
may eventually be assumed temperature independent
within the error bars. Alternatively then, the overall
temperature dependence of the carbon diffusion
coefficient will look like this: as the temperature is
increased from zero-point, an almost constant lower
temperature branch will be observed followed by a more
or less gradual transition to a higher temperature
Arrhenius portion. It will be characteristic of a migration
through barrier tunneling at the lower temperatures
followed by migration through overbarrier jumps at the
higher temperatures.

In what comes next, we will give arguments for
a quantum mechanical extension of the theory and
compare it with available experimental diffusion data.
An option is provided by the small polaron theories
based on the Born-Oppenheimer (B-O) approximation
which assumes that locally the electrons follow
adiabatically the nuclear motion. However, care will
have to be taken to present the basic assumptions
concisely though cautiously, since so far metals have
hardly been the traditional testing ground for the
quantal small polaron theories developed originally for
poorly conducting solids. In this respect, we point to an
earlier study applying a small polaron theory to the
migration of positrons in metallic solids [6]. Foundations
of the general theory of quantum diffusion in solids have
apparently been laid down during the late 1970s [7],
albeit from a different angle, as will be seen shortly.

Other examples are provided by theoretical
approaches to the diffusion of light interstitials in metals
coupled to lattice vibrations [8]. The dynamics of a system
(metal and diffusing particle) is decoupled into a fast

dynamics of the light interstitial, which determines the
“bare” tunneling rate, and the slower dynamics of
the host atoms, the phonon heat bath, which couples to
“dress” the tunneling rate [8]. There are several basic
assumptions: first, the B-O approximation which
separates electronic from nuclear motions. Second, the
adiabatic approximation whereby a light interstitial
follows the heat bath atoms adiabatically. Third,
Condon’s approximation which states that the bare
tunneling probability is independent of the phonon
state, i.e. the temperature T. Fourth, the diffusing
particle in a metal couples to the conduction electrons
nonadiabatically resulting in a declining tunneling rate
as the temperature is raised at low T.

Quantum mechanical migration

In quantum mechanical extensions the bare rate is
defined one way or the other so as to incorporate
tunneling transitions across the barrier. Examples can
be found based on the B-O approximation by Fermi’s
Golden Rule to the multiphonon transitions, elastic
(else phonon diagonal) or inelastic (else phonon off-
diagonal), and by the occurrence probability approaches
to the horizontal-tunneling elastic transitions [2, 5]. We
will presently follow Christov’s two-site definition of the
elastic-tunneling rate, as discussed at length elsewhere
[3]. While the multiphonon theory has widely been
applied to developing the premises of quantum
diffusion [7], the elastic-tunneling theory appears to
have enjoyed less popularity [3]. Nevertheless, the
occurrence-probability theory is simpler and leads to
physically transparent results. One way or the other, an
extensive multiphonon excursion will be left for
a subsequent publication.

Two-site Hamiltonian

To B-O approximation which separates electronic and
nuclear variables the electrostatic potential at the
migrating atom’s site is given by the adiabatic energy
of an electronic state centered at that site. In the two-
site problem we correspondingly select a basis set of
two static electron states |1 > &|2 >. These are physi-
cally equivalent electronic states centered at two
neighboring migrational sites (two-level problem). We
then define the following two-site Hamiltonian:

(3) H = E (|1 > < 1| + |2 > < 2|)
+ V12 (|1 > < 2| + |2 > < 1|)
+ GQ (|1 > < 1| − |2 > < 2|) + ½Mω2Q2

where E stands for the electron energy, V12 is the
electron energy splitting, Q is the mode coordinate, G
is the electron-mode coupling constant. In Eq. (3), the
first block of round brackets is the static electronic
energy, the second one is the mixing energy of the
electron states with each other and the third one is
the electron-mode coupling energy. Mixing is essential
for the migration transition from site 1 to site 2 to occur
at all, for it splits the electronic terms thereby securing
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accounting for the possiblity of multiple transitions forth
and back [3]. The nuclear probabilities Wnuke(En) are
derived by a method due to Bardeen and Christov [2]:

Wnuke(En) = 4π2|U12|
2 . σ1(En) . σ2(En)

U12 = (− 2/2M) [u2* (du1/dq) − u1(du2*/dq)q=0

where ui is the wavefunction; σi(En) is the DOS in either
electronic state; q is the scaled mode coordinate
q = (K/ ω)1/2Q; Q being the actual configurational
coordinate.

Equation (8) gives the transition probabilities
essentialy dependent on the form of the migration
hindering barrier. We have considered two forms of
a barrier: parabolic arising in an ensemble of linear
harmonic oscillators and sinusoidal arising in an
ensemble of nonlinear oscillators. Due to mathematical
complexity, only the linear case will be considered in
detail presently, while the nonlinear alternative will be
left to a subsequent publication.

Parabolic barrier

Introducing the parabolic two-site potential Eq. (3)
brings the nuclear problem to the familiar field of
harmonic oscillators. Inserting Z#/Z = 2sinh( ω/2kBT)
and En = (n + ½) ω, we get for the two-site rate:

(9) κmh(T) = 2ν.sinh( ω/2kBT)
. {ΣE(n)>>εεεεε(B){2 [1 − exp(−2πγn)]/[2 − exp(−2πγn)]}

   . Wnuke overbarrier}exp(−En/kBT) + ΣE(n)<<e(B){2πγn
2γ(n)−1

    . exp(−2γn)/[Γ(γn)]2}.{π[Fnn(q0,qC)/ 2nn!]2 exp(−εR/ ω)}
                                                . exp(−En/kBT)}

where the expressions put within the small curled
brackets are the electron-transfer Wel(En) and nuclear-
tunneling Wnuke(En) probabilities, overbarrier for En >
εB and underbarrier for En < εB, respectively,

(10) γn = (ε2
αβ /8 ω)(εR |En − εC|)−1/2

is Landau-Zener’s parameter,

(11) Fnn(q0,qC) = 2q0Hn(qC)Hn(qC − 2q0)
− 2nHn−1(qC)Hn−1(qC − 2q0)
+ 2nHn(qC)Hn−1(qC − 2q0)

is a quadratic form of Hermite polynomials, ω = 2πν is
the angular vibrational frequency. We set Wnuke overbarrier
= 1 for the overbarrier tunneling probability. q0 and qC
are the scaled well-bottom and crossover coordinates,
respectively.

The remaining parameters are: εR − the lattice-
reorganization energy; εC − the crossover energy, and
ωbare − the bare vibrational frequency. They relate to
εB, εCE  and η by way of

εC = εB(1 + η2)/(1 − η)2 = εCE(1 + η2)
εR = 4εB(1 + η)/(1 − η) = 4εCE(1 − η2)

= εC(1 − η2)/(1 + η2)
ωbare = ω/√(1 − η2)

(8)

(12)

adiabaticity at the crossover. (This statement will become
transparent shortly.) Ultimately, the electron-mode
coupling energy brings a temperature dependence to
the diffusion coefficient. The out-of-phase coupling is
typical for a displacement-promoting mode: one of the
electronic states is squeezed, while the other one is
extended. The last fourth term is the elastic energy of
the migrating atom.

To work out an electronic potential for the migrating
atom, we solve for Schrodinger’s equation Hψ = εψ by
means of the linear combination ψ = C1|1 > + C2|2 >.
Ultimately, we derive the following roots of the secular
equation:

(4)  ε±(Q) = ½{(H11 + H22) ± √[(H11 – H22)
2 + 4V 2

12]}
= ½Mω2Q2 + E ± √ [(GQ)2 + V2

12]

This is a double branch potential which controls the
impurity atom migration along the active mode
coordinate Q either in ground adiabatic state (ε−) or in
excited adiabatic state (ε+). ε+(Q) and ε−(Q) avoid
crossing at Q = 0 due to the off-diagonal splitting of
2V12. While the upper branch ε+(Q) is an unharmonic
parabola bottomed at Q = 0, the lower branch ε−(Q) at
η < 1 is composed of two isoenergy latteral wells, one
on each side of the crossover coordinate, forming
a barrier in-between (cf. Fig. 3). Here and above η =
V12/2εCE is the normalized interlevel energy gap. The
lateral wells bottom at

(5)  Q0± = ±√(G4 – V2
12

 K2)/GK = ±√(2εCE/K).√(1 – η2)

where K = Mω2 is the stiffness. The interwell barrier at
Q = 0 amounts to

(6) εB = ε−(0) – ε−(Q0–) = εCE (1 – η)2

while εCE = G2/2K is the electron-mode coupling
energy.

Two-site rate

Christov’s approach gives the two-site bare rate as
a sum of weighted transition probabilities for horizontal
(elastic) tunneling transitions at the quantized energy
levels. Golden Rule alike, he assumes that the vibronic
quantum states in the initial electronic state are in
thermal equilibrium under Boltzmann statistics. He also
applies Condon’s approximation to factorize out the
transition probabilities W(En) into electronic Wel(En)
and nuclear Wnuke(En) components. Under these condi-
tions, the quantal migration rate along the active mode
coordinate of frequency ν reads:

(7) κmh(T) = ν(Z#/Z)ΣE(n)Wel(En)Wnuke(En). exp(−En/kBT)

where Z is the complete partition function and Z# is
the contribution to Z of all nonreactive modes. In all
cases the electronic probabilities Wel(En) are derived
using an extension of Landau and Zener’s formula for
the (avoided) crossing of molecular terms [10], but
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The dynamic migration rate κmh(T) depends on three
fitting parameters; we presently take them to be η, εB,
and ω. The isothermal symmetry of the two-site double
well potential follows from the requirement that the
migration steps should be reversible forth and back.

From the rate Eq. (9) it is easy to derive the clasical
Arrhenius rate at temperatures sufficiently high to
secure the complete predominance of the overbarrier
transitions: as an illustration, from the first part of
Eq. (9) using Wnuke ~ 1 and γn >> 1 for overbarrier
and adiabatic transitions, respectively, we get at 2kBT
>> ω (converting the sum into an integral by setting
dEn ~ ω):

(13) κmh(T) = νε(B) ∫
∝
exp(−En/kBT) dEn/kBT

 = ν .exp(−εB/kBT)

Quantal diffusion coefficient

Horizontal tunneling rate

Substituting the quantal migration rate κmh(T) for the
classic rate km(T) we generalize Eq. (1) for the diffusion
coefficient to get

(14) D(T) = f(ζ/6) d2 κmh(T)

It is essential to point out that the quantal rate κmh(T)
combines both the low temperature tunneling rate and
the higher temperature classic rate as verified mathemat-
ically by means of Eq. (9). κmh(T) summing up the partial
rates at various vibronic energy levels which rates
conserve the number of phonons, it gives the diffusion
coefficient of a coherent migration process at any tem-
perature. In particular, the total zero-point rate as
obtained from Eq. (9) being

(15) κmh(0) = (εR/ ) .exp(−εRω)

it results in a low temperature diffusion coefficient

(16) D(0) = f(ζ/6) d2(εR/ ) .exp(−εR/ ω)

We see that displaying the quantal feature of carbon
diffusion to a reasonable extent is largely due to the
high coupled vibrational quantum ω. From Eqs. (15)
and (2) we also get the relationship between the classical
frequency factor and the quantal zero-point diffusion
coefficient D(0):

(17) D0 = [D(0)/2π].( ω/εR).exp(εR/ ω)

which possibly gives an alternative clue as to why the
experimental frequency factor exceeds so largely
the predicted classical D0.

We shall further proceed by fitting Eq. (14) to the
experimental data. The experimental diffusion coeffi-
cients are depicted by symbols in Fig. 1. It can be seen
that the low-temperature branch is succeeded from right
to left by an almost flat plateau followed rather steeply
by an Arrhenius branch at roughly Tt ~ 250 K. The
abrupt transition to the thermally activated branch

signifies the start of thermally populating the excited
vibronic levels in an adiabatic process. From the bending
point we estimate roughly the active mode frequency
at ω ~ 4kBTt ~ 0.1 eV. We also get εB ~ 1 eV from the
slope of the thermally-activated branch. For the sake
of simplicity, we assume that the electronic intersite
transitions are all adiabatic, that is, we set Wel(En) = 1
at all En. Clearly, this is an oversimplification but it can
help see where we are. We also find η = 0.025 to be the
appropriate gap parameter. The dashed-line in Fig. 1
depicts a good fit to the experimental points made by
means of the elastic-tunneling isothermal theory of
Eq. (14).

Inelastic tunneling correction

We also see that the “flat plateau” in the temperature
dependence between 10−100 K is in fact slowly and
monotonically increasing as the temperature is raised.
While the flat plateau is intrinsic of the horizontal
(elastic) tunneling reaction rate, the monotonic rise is
due to an inelastic-tunneling one-phonon absorption
complementary to the basic elastic process. To account
for the inelastic process, we add a rate term of a form
derived for a phonon-coupled two-level system [2]:

(18) κmν = C cotanh(∆/kBT)

where ∆ is the ground level vibronic tunneling splitting.
Eq. (17) reduces to κmν = C(kB/∆)T ≡ AT at T >> ∆/kB.
For a typical value of ∆ = 0.001, this gives T >> 10 K
to cover most of the plateau range. We also estimate
the relative weight of inelastic versus thermally-
activated elastic transitions at the bending point Tt to
find that the former no longer make any sizeable share
of the observed rate process. If Eq. (18) is the only rate
determining agent at low temperature, then

Fig. 1. Temperature dependence of the diffusion coefficient
of carbon in α-iron from Refs. [4, 9, 11, 12] (D in cm2.s−1):
experimental points by filled squares, fit of isothermal
reaction-rate by a dashed line. A small difference between
experiment and theory below LNT, due to one-phonon
processes, is also accounted for by means of an additive
correction of the form AT, where A is constant and
T is temperature, leading to the solid line fit therein.
P = 6.5 × 10−17, A = 1.23 × 10−9, Eb = 1.1 eV, ω = 0.077 eV,
η = 0.025.
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(19) D(0) = f(ζ/6)d2C ≡ f(ζ/6)d2(∆/kB)A

In all other cases the zero-point diffusion coefficient
will sum up of the right hand sides of Eqs. (16) and
(18), that is,

(20)  D(0) = f(ζ/6)d2[(εR/ ).exp(−εR/ ω) + (∆/kB)A]

In both Eqs. (16) and (19) the scaling factor P = f(ζ/6)d 2

is common, as it controls the conversion of rate to
diffusion data.

A good fit to the experimental data as shown by
the solid line in Fig. 1 is obtained incorporating the
inelastic-tunneling correction as in Eq. (20) at A =
1.59 × 10−9 s−1.K−1, while the remaining parameters εB,
ω and η are the same as the ones of the dashed-line fit

therein. Figure 2 shows the extended thermally-activated
range of the temperature dependencies, experimental
and theoretical. The two fits of Fig. 1, by dashed and
solid lines, respectively, are very close to each other in
the thermally-activated range. A nice concord is thus
manifested between experiment and theory. Our
Arrhenius branch is to be compared with earlier data
in Fig. 4.7 of Wert and Thomson’s monograph [14].

Analysis

The obtained fitting and derivative parameters are listed
next in Table 1. One is the reorganization energy εR =
½K(∆Q0)

2 ~ 4.626 eV where ∆Q0 = 2Q0 is the interwell
separation. Next we calculate the stiffness K = Mω2 =
17 eV/Å2 for M = 12 a.m.u. and ω = 0.077 eV. Inserting
we get ∆Q0 ~ 0.738 Å. (We note that ∆Q relating to
configurational space, it may not be directly convertible
to the jump distance d.) Another one is the electron-
mode coupling strength G obtainable from the coupling
energy εCE = G2/2K ~ 1.157 eV: we get G = √(2ECEK)
~ 6.272 eV/Å. From η = V12/2εCE ~ 0.025 we now
estimate V12 ~ 0.058 eV. Using the estimated parameters
and setting E = 0, we show in Fig. 3 the potential energy
profile for carbon diffusion in α-iron, as obtained from
Eq. (3).

The obtained numerical values of K and G, essential
as they are for choosing between various model
predictions, seem at least reasonable in view of the high
coupled vibrational frequency. But, model predictions
for poorly conducting solids are less applicable to
metals, due to screening by the electron gas. In spite of
the uncertainties, there is no way of explaining the
temperature dependence of the diffusion coefficient
other than by means of the coupling to lattice vibrations.
With specific differences between fairly and poorly
conducting solids in mind, we also believe the present
attempt may be found useful for dealing with impurity
diffusion problems in metals.

Fig. 2. Temperature dependence of the carbon diffusion
coefficient within the Arrhenius range from Refs. [9, 11, 12]
experimental points by symbols. Our fits are: (i) isothermal
reaction-rate fit (dashed) and (ii) fit combining basic
isothermal calculations with one-phonon corrections (solid),
as in Fig. 1. The numerical values of D are in cm2.s−1. Compare
with earlier diffusion data from Wert and Thomson’s
monograph [14]. Eb = 1.1 eV, ω = 0.077 eV, η = 0.025.

Fig. 3. Calculated two-site adiabatic potential energy profile
along the coupled-mode coordinate for carbon diffusion in
α-iron using the parametric data in Fig. 1 and Table 1.

Table 1. Fitting and derivative parameters for the adiabatic potential energy surface controlling carbon diffusion in α-iron

Fitting parameters                                                                                             Derivative parameters

εB [eV] ω [eV] η K [eV/Å2] G [eV/Å] εCE [eV] εR [eV] εC [eV] ∆Q [Å]

1.1 0.077 0.025 17 6.272 1.157 4.626 1.158 0.738

2V12 [eV] D(0)th
† [cm2/s] D(0)exp [cm2/s] d [Å] P = f(ζ/6)d2 [cm2] f A [s−1.K−1]

0.116 3.7 × 10−27 6.17 × 10−25 0.74 6.50 × 10−17 1.79 1.59 × 10−9

1.2 × 10−24

   †D(0)thh = P (εR/ ).exp(−εR/ ω).     D(0)thv = P (∆/kB) A.
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We also compare the experimental scaling factor P
with the theoretical formula relating diffusion to rate
as in Eq. (14) to get f ~ 1. At low temperature,
therefore, the amount of carbon atoms making the
efficient “forward jumps” in coherent migration is
rather high.

Discussion

Undoubtedly, due to its practical significance, the
system composed of carbon impurity atoms embedded
in an iron frame has been one of the first to study
scientifically in mankind’s historic retrospective. It is
amazing how long it has taken before quantal features
of carbon impurity migration have been revealed even
though somewhat accidentally.

In the foregoing work, we compared the tempera-
ture dependencies predicted for the bare rates, elastic
and inelastic, to the experimental diffusion data on
carbon in α-iron. From this comparison we obtained
fitting values for the rate parameters, such as the
migration hindering barrier and the coupled vibrational
frequency. Both fitting values are in concert with the
experimental estimates which manifests the applicability
of the idealized bare rate to describing the carbon
diffusion data. The correspondence between bare and
observed rates suggests that dressing effects due to
thermal bath coupling in the carbon and iron system
may be of the textbook type. Indeed, the retardation
due to thermal bath dressing comes from mass and
coupled frequency renormalization. Among other
things renormalization results in changes (reduction)
of the effective nearest-neighbor jump distance (else
the interwell separation) and of the effective tunneling
frequency of carbon diffusion. As regards retardation
caused by conduction electrons, we find no trace of its
fingerprint in the experimental temperature depend-
ence of the apparent rate within the tunneling range.
We also find no evidence for any carbon-carbon
interaction effects in diffusion at least at the low carbon
densities involved (4% presently) which is not unexpected.
In summary, we conclude that small-polaron theories
seem to be an useful tool for dealing with the migration
of carbon interstitials in α-iron.

The bare-rate theory used presently to tackle the
diffusion problem is one that accounts for elastic-
tunneling transitions mainly, though small corrections
were made to include inelastic tunneling as well. Elastic
tunneling leads to a coherent migration in which the
number of phonons is conserved. The alternative is the
theory accounting for inelastic-tunneling multiphonon
transitions in which migration is accompanied by the
absorption and emission of phonons. Accordingly,
inelastic tunneling leads to a diffusion coefficient
composed of coherent and incoherent components [7].
In the multiphonon model, the coherent tunneling is
predicted dominating at the lowest temperatures
though giving way to the incoherent process as the
phonon exchange becomes important. For this reason,
our approach conserving the number of phonons should
be comparable to the multiphonon theory at the lowest
temperatures which makes desirable a parallel analysis

of the multiphonon fundamentals. As a matter of fact,
the multiphonon theory predicts that one-phonon
processes with rate proportional to T will follow suit as
the temperature is raised. At the same time, the
horizontal-tunneling likely prediction is for a constant
rate until thermal transitions to the higher lying vibronic
level become sizeable. The situation is envisaged by the
experimental data in Fig. 1 where the small increment
of the measured diffusion coefficient data over the zero-
point data below LNT is attributed to the one-phonon
processes. A matter for further improvements of the
accuracy of the isothermal rate approach is working out
a better adiabatic potential, such as the trigonometric
potential, which are now in progress.

Experimental evidence comes to show that the
migrating carbon in α-iron occupies interstitial sites or
pores. There are two types of an interstice in α-iron:
less voluminous (00½) octahedral sites and more
spacious (001/4) tetrahedral sites. It is a textbook
assertion that carbon prefers the former sites despite
their associated smaller volume [1]. On incorporating
the impurity in an octahedral interstice, the local
symmetry reduces from cubic to tetragonal. The
controversy seems related to the lattice distortions
produced by the incorporated atom: if in a tetra-pore
C will have to displace all four nearby Fe atoms so as to
make room for itself, while if in an octa-pore the
induced deformation will spread to only two nearest
neighbors.

One way or the other, the horizontal tunneling
analysis is a powerful tool which provides, among other
things, an estimate for the separation between
neighboring sites in diffusion, and indeed, given that
real-space and configurational-space coordinates run
along similar straight lines, the site separation amounts
to ∆Q0. From our estimates based on the experimental
data, we get ∆Q0 ~ √2/2 = 0.71 Å which implies that
the impurity jumps along the line segments connecting
nearest-neighbor [½00] octahedral sites whose nn separ-
ation along the interconnecting segment is (√2/2)a
where a is the cubic lattice parameter. With a = 2.68 Å
we see that the intersite separation would match our
estimate for ∆Q0, provided both sites, initial and final,
are displaced some 25−30% towards the tetrahedral
positions along the vertical axis to make way for the
impurity jump. In this sense our fitting results suggest
that even though chiefly incorporated in octahedral sites
carbon may prefer tetrahedral pores for migration
across the α-iron lattice.

There apparently is more than one channel for
carbon diffusion in iron, for example, o-o, o-t-o, etc. If
more than one channel is operative, the present theory
considers an effective rate process along a single
effective configurational (mode) coordinate coupled to
an effective vibrational frequency. Now, the actual
configurational situation can be reconstructed with the
help of additional considerations. In the present case
the good agreement of the fitting vibrational frequency
to the experimental frequency tells that our effective
configurational coordinate is close to the actual one.

Another problem mentioned above is the likely
symmetry of the coupled vibrational mode. We assume
that it is the vibrations of the small carbon atom which
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drive it jumping from site to site. We obtain a fitting
evidence confirming the identity of our frequency par-
ameter (77 meV) with the carbon frequency obtained
from inelastic neutron scattering (76 meV) [13]. The
estimate of K made above also assigns the whole
vibrational feature to the carbon impurity. This implies
a complete isotope effect ν ∝  M−1/2 for the diffusing
entity. Alternative symmetric models are also
conceivable.
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