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Introduction

Ohta et al. [8, 9] have studied the external electric field
effect on electron transfer (ET) between excited
N-ethylcarbazole (ECZ*) as an electron donor and
dimethylterephthalate (DMTP) as an electron acceptor,
which were doped in a poly-methylmethacrylate
(PMMA) film at room temperature. They measured the
ECZ* fluorescence decay at various strengths F of
the applied field and for various concentrations of ECZ
and DMTP. They found that at weak fields the variation
in the steady-state fluorescence intensity of ECZ*
induced by the field is proportional to F2 and to the
concentration of acceptors cA. These relations have been
reproduced recently by the theoretical model [5], which
assumes that the external field causes a modification
of the free energy change ∆G of the ET reaction. Based
on this modification it appears possible to correlate
successfully the experimentally observed field induced
reduction (or, for other donor-acceptor systems,
enhancement) of the donor fluorescence with the
enhanced (or reduced) ET rate [4]. The model
concerns, however, the case of constant donor concen-
tration cD and does not explain why the experimentally
observed reduction in ECZ* fluorescence intensity due
to the electric field becomes larger as the ECZ concen-
tration is increased [9]. Theoretical attempts to explain
this observation are based on the assumption that the
donor excitation can migrate among donors before it is
finally quenched by the randomly distributed quenchers.
The migration of excitation does not shorten its lifetime,
but only enhances the excitation encounter with
quenchers, which eventually leads to faster quenching
with increasing donor concentration. Two analytical
models describe the effect of excitation migration on
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the fluorescence quenching kinetics; one of them adopts
a diffusion mechanism for the excitation migration [1]
and the other assumes the energy hopping mechanism
[2, 4]. Application of these models is, however, limited
to the systems with relatively high (the former model)
or low (the latter model) donor concentrations. In the
present paper, we introduce a new theoretical approach,
which seems to be correct throughout the entire donor
concentration range employed. Our approach produces
the fluorescence quenching kinetics in a donor*-
acceptor system in a rigid matrix via direct computer
simulation of two competing processes: the ET and the
excitation migration by resonant energy transfer.
We express the ET and the energy transfer rate constants
by the Marcus and Förster equations, respectively, and
check how the donor fluorescence decay rate depends
on the parameters of these equations and on the
concentration cD. Finally, we compare the fluorescence
decay profiles calculated for various cD with the
experimental decays measured for the ECZ*-DMTP
system in the PMMA film.

Model

Let us consider m donors (D) randomly distributed
in a box of volume V and one acceptor (A) situated at
the center of the box. The position of A is chosen as the
origin and the position of i-th donor is denoted by
the vector ri. D and A molecules do not move during
each simulation run, and the concentration (number
density) of donors is equal to cD = m/V. Suppose that
at time t = 0 a donor is excited. The excitation energy
can hop among donors with the rate constant given by
the Förster equation

(1)

where Rij = |ri – rj| is the relative separation of i-th
and j-th D molecules, τ0 is the D* fluorescence lifetime
in the absence of acceptors, and R0 is the Förster radius
[3]. The excitation of D is quenched either by electron
transfer to A or by other processes, which are indepen-
dent of the presence of electron acceptors (natural
decay). Deactivation due to the latter mechanism can
be described by the rate constant k0 = 1/τ0 (cf. equation
(16) below). The rate constant k of the ET to A is
described by the Marcus equation

(2)

where the Gibbs free energy change ∆G depends on
the donor-acceptor distance r through

(3)

∆G0 is the standard free energy change and εs is the
static dielectric constant of the solvent. Other parameters

in equation (2) are as follows:

(4) λ(r) = λi + λs(r)

where λi stands for the average vibrational reorganiz-
ation energy of the D-A system, λs is the solvent reorgan-
ization energy, expressed in terms of the dielectric
continuum model as

(5)

and J is the transfer integral [7]

(6) J2(r) = J2
0exp{−β[r – (d + a)]}

εop is the optical dielectric constant of the solvent, d
and a are the radii of the D and A molecules, respect-
ively, J0 is the transfer integral at the encounter distance
(d + a), and β stands for the attenuation constant.

Let Wj(t,ri) be the pair survival probability of the
excitation initially located at i-th D, in the presence of
a single A. We consider various configurations of m
donors randomly distributed in the box. The subscript j
denotes j-th configuration. If the excitation is produced
at any D with equal probability, then the averaged pair
survival probability for j-th distribution of D is given by

(7)

Next, we average Wj(t) over L different configurations
of m donors

(8)

The survival probability W(t) in the presence of n
acceptors randomly distributed in the volume V is given
as

(9)

Finally, assuming the Poisson distribution with the mean
µ = cAV for the number of acceptors in the volume V,
we perform the averaging of Pn(t) over this distribution
and obtain the macroscopic expression for the excitation
survival probability

(10)

Expression 1 – Wj(t,ri) in eq. (10) can be considered as
a fraction of i-th D excitation that decays before time t.
The sum over m donors in j-th configuration
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(11)

gives the number Nj(t) of excitations that decay before
time t by ET to an acceptor when the donors in j-th
configuration are excited. The quantity Nj(t) can be
calculated from the following set of the rate equations
for the population of excitations pi(t), i ∈  [1,m], at i-th
D molecule,

(12)

where u and k are the rate constants given by eqs. (1)
and (2), respectively. The initial conditions are
given by

(13) pi(t = 0) = 1     for all i

In terms of pi(t) the quantity Nj(t), j ∈  [1,m] is expressed
as

(14)

The average survival probability PET(t) can be rewritten
now as

(15)

with Nj(t) given by eq. (14).
Equation (15) takes into account the decay of

excitations which is caused only by the ET from D* to
A. To get the excitation survival probability that can be
verifiable experimentally, we should include into (15)
the expression

(16) PNat(t) = exp(−k0
.t)

which is connected with the natural decay of the donor
excitation. Thus, the final formula for the excitation
survival probability is as follows

(17)

Results and discussion

We take the volume V as a cubic box with the side-length
b = (m/cD)1/3. The value of m for each concentration cD
is different and chosen to preserve an approximately
constant value of V (~ 653 Å3) in all calculations per-
formed. The coordinates of donors in the box are
generated using the random number generator and the
applied procedure assures that the distance between

any pair of donors and between any D and A are greater
than 6 Å, i.e., greater than the sum of radii of the two
molecules.

For a given configuration of m donors, we solve the
set (12) of ordinary differential equations for pi(t) with
initial conditions (13) by using the Bader and Deuflhard
modification of the Bulirsh and Stoer method with the
Richardson extrapolation [10]. This method is especially
efficient in the case of a set of stiff differential equations.
While calculating the distances Rij between D molecules
in the right-hand sides of eqs. (12), we apply the periodic
boundary conditions to mimic the bulk system. The cal-
culations were performed for cA = 1 mol% and cD = 2,
5, and 10 mol% (concentrations are expressed in the
molar ratio to the monomer unit of PMMA). The values
of the other parameters (i.e., T = 298 K, εs = 3.6, εop =
2.33, a = d = 3 Å, λ i = 0.3 eV, R0 = 17 Å, k0 =
8 × 107 s−1) are the same as in Refs. [4, 5]. The obtained
functions pi(t) allow us to calculate the time evolution
of Nj(t) by using eq. (14). Next, we generate a new (k-th)
configuration of m donors in the same box and repeat
the calculation to obtain the new function Nk(t). The
same procedure is repeated up to L times. Having the
functions Nj(t) for j ∈  [1,L], we evaluate the excitation
survival probability given by eq. (15) or, when including
the natural decay of excitation, by eq. (17). To perform
the calculations we prepared the program in ANSI C,
compiled it under GCC and run mostly on IBM PC with
Pentium 4, 1.7 GHz and Windows XP O/S. The com-
putation time was dependent on the values of cD and L
considered and in the case of L = 100 was equal to 26
or 515 s for cD = 2 or 10 mol%, respectively.

Figure 1 shows P(t) as a function of time calculated
for cD = 2 mol% and averaged over L configurations
of donors. The full lines illustrate the individual decay
curves obtained for three different single configurations
of m = 36 donors (L = 1). The survival probability
averaged over 10 configurations differs considerably
from those averaged over a larger number of configur-
ations. Small differences between the curves for L = 100

Fig. 1. Time dependence of the survival probability of the
excitation P(t) given by eq. (17) and averaged over L = 10,
100, and 7000 different configurations of m = 38 donors in
the volume V. Full lines show the decay curves for three diffe-
rent single configurations of m donors (L = 1); J0 = 3.6 × 10−3

eV, β = 1.0 Å−1, ∆G0 = 0.
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and L = 7000 prove that the statistical error of the latter
result is negligible. The higher cD the lower scatter
of individual decays − this effect can be expected as the
increase of the number of D molecules in the volume V
(up to 90 or 165 for cD equal to 5 or 10 mol%, respect-
ively) results in narrowing of the donor-donor distance
distribution. Although the statistical error decreases
with increasing cD we perform averaging over L = 7000
configurations for all cD considered.

Figure 2 gives an insight into the sensitivity of the
simulated survival probabilities PET(t) to the values of
the Marcus equation parameters: ∆G0, J0, and β. The
lower panel of the figure shows that the dependence
of PET(t) on β is negligible within the range of β =
0.9–1.1 Å−1. The parameter J0 exerts a significant influ-
ence on the decay rate of the donor excitation (middle
panel). The increase of J0 accelerates the excitation
decay. The upper panel shows the dependence of PET(t)
on the standard free energy change. The fastest decay
is obtained for ∆G0 = −0.3 eV and this curve lies beneath
the line for the zero standard free energy change. Further
decrease of ∆G0 results in slowing down the decay rate
of the excitation survival probability. The depen-
dence of PET(t) on ∆G0 reflects the dependence of the
ET rate constant on ∆G0, as well as the relative magni-
tude of k(r) to u(R). Let consider the value of the ET
rate constant k(rnn) at the average distance from an
acceptor to the nearest-neighbor donor, rnn [6]. The

value of rnn depends on the concentration of donors,
and is equal to 8.2 Å for cD = 10 mol%. The value of
k(rnn) is 1.05 × 1010 s−1 at the zero free energy change
(quite close to k(rnn) = 7.12 × 109 s−1 at ∆G0 = −0.6 eV),
increases to 2.74 × 1010 s−1 at ∆G0 = −0.3 eV, and drops
down to 2.73 × 109 s−1 at ∆G0 = −0.7 eV. The average
donor-donor distance at cD = 10 mol% is Rav = 11.9 Å,
and the energy migration rate constant at this distance
is equal to 6.8 × 108 s−1. Hence, the ratio k(rnn)/u(Rav)
decreases from 40 to only 4 when ∆G0 changes from
−0.3 to −0.7 eV. This explains a relatively slow decay of
PET(t) calculated with ∆G0 = −0.7 eV and the fastest
decay of PET(t) for small negative values of the standard
free energy change.

Figure 3 presents the dependence of PET(t) on the
value of the Förster radius R0. The increase of R0 by
a factor of 4 accelerates the excitation energy migration
among donors by a factor of 46. For R0 = 8.5 Å the
value of u(Rav) is 1.04 × 103 times lower than k(rnn), and,
therefore, the energy transfer process is not effective
for the kinetics of the fluorescence decay. On the
contrary, u(Rav) with R0 = 34 Å is ~4 times higher than
k(rnn) and all the excitations are very efficiently trans-
ferred into the vicinity of the electron acceptors and
immediately quenched via ET reactions. This figure
proves that the excitation migration can indeed consi-
derably influence the fluorescence quenching process.

In Fig. 4, we compare the excitation survival proba-
bility P(t), calculated for cD = 2, 5, and 10 mol%, to the
respective experimental decays of the ECZ* fluore-
scence [9]. Simulations were performed for reasonable
values of the parameters: ∆G0 = 0 eV, J0 = 3.6 × 10−3 eV,
β = 1.0 Å−1, and R0 = 17 Å. The values of β and R0 are
taken to some extent arbitrily, but the values of ∆G0
and J0 have been roughly optimized in order to repro-
duce the experimental profiles presented in the figure.

Conclusions

The present paper introduces a simulation model which
includes the competition between two processes, the

Fig. 3. Dependence of PET(t) on the value of the Förster radius
R0; J0 = 3.6 × 10−3 eV, β = 1.0 Å−1, ∆G0 = 0.

Fig. 2. Dependence of PET(t), given by eq. (15), on the
parameters of the ET rate constant. In each panel the decay
curves are calculated by varying the value of β, or J0, or ∆G0.
The values of the other two parameters used are as follows:
(a) ∆G0 = 0, J0 = 3.6 × 10−3 eV; (b) ∆G0 = 0, β = 1.0 Å−1; (c)
β = 1.0 Å−1, J0 = 3.6 × 10−3 eV.
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electron and the excitation-energy transfers, in a rigid
matrix with randomly distributed donor and acceptor
molecules. The calculations performed for the mixture
of ECZ and DMTP in the PMMA film show that the
model is able to reproduce correctly the kinetics of
the ECZ* fluorescence quenching within a wide range
of the donor concentration. The model can be easily
modified to simulate the kinetics of donor fluorescence
quenching for the system, which is placed in an external
electric field F. Similarly as in Ref. [5], we can assume
that the applied electric field influences the rate of the
ET through a modification of the free energy change
and calculate the excitation survival probability P(t,F)
in the presence of the field F employing eq. (2) of
Ref. [5] for the ET rate constant k(r,F). These simu-
lations allow us to determine the effect of the field F
on the donor fluorescence quenching (cf. eqs. (15) and
(16) of Ref. [5]) and, when performed for various values
of cD, the dependence of the field effect on the
concentration of donors in the considered matrix. Such
calculations are in progress in our laboratory.
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