The mechanism and kinetics of ozone formation in a pulse radiolysis study of the Ar-O₂ system

Krzysztof Wojciechowski, Dorota Sugier, Karol Wnorowski, Jan Kowalczyk, Antoni Jówko

Abstract The mechanism and kinetics of O₃ formation after an electron pulse have been studied in the Ar-O₂ systems by time resolved optical measurements at $\lambda = 260$ nm. The second order rate constant of energy transfer from excited Ar(4s,4p) states to O₂ molecules:

(1) $\operatorname{Ar}^*, \operatorname{Ar}^{**} + \operatorname{O}_2 \to \operatorname{O}_2^* + \operatorname{Ar},$

was found to be $(8.9 \pm 2.1) \times 10^{-10}$ cm³·s⁻¹. It was found also the evidence of the third order process contribution to the energy transfer:

(2) $\operatorname{Ar}^*, \operatorname{Ar}^{**} + \operatorname{Ar} + \operatorname{O}_2 \rightarrow \operatorname{products},$

with the rate constant in the range $(1.5-3.7)\times10^{-29}$ cm⁶·s⁻¹. The rate constant of the deactivation of excited ozone molecules by O₂ was found to be $(5.1 \pm 0.6)\times10^{-15}$ cm³·s⁻¹.

Key words pulse radiolysis • argon • oxygen • ozone

K. Wojciechowski[⊠], D. Sugier, K. Wnorowski,
J. Kowalczyk, A. Jówko
Department of Chemistry,
University of Podlasie,
54 3 Maja Str., 08-110 Siedlce, Poland,
Tel.: +48 25-6431007, Fax: +48 25-6442045,
E-mail: kwoj@ap.siedlce.pl

Received: 17 December 2004 Accepted: 27 June 2005

Introduction

The energy transfer process from excited rare gas atoms to various molecules was extensively studied by the Setser group [10, 12, 15], mainly for $Xe({}^{3}P_{2})$ and $Kr({}^{3}P_{2})$ lowest metastable excited states. Our earlier studies of this process showed that the rates of energy transfer from $Xe({}^{3}P_{1})$ resonance state to molecules increase with Xe pressures [17–19, 21, 22]. The same effect was found for higher excited Xe atoms generated in the pulse radiolysis experiments [20]. It was shown that the third order energy transfer reaction:

(3) $Xe^*(6s,6p) + Xe + M \rightarrow products$

is responsible for such "pressure" effect. The rate constants of reaction (3) for a number of molecules were found to be in the range from $(1-2)\times10^{-28}$ cm⁶·s⁻¹ for such molecules as CH₄, C₂H₆, CCl₄, SOCl₂ and for many other simple molecules up to 2×10^{-27} cm⁶·s⁻¹ for HCl [17–22]. In all cases, reaction (3) competes effectively with the second order energy transfer reactions:

(4)
$$Xe^*(6s,6p) + M \rightarrow products$$

as the k_4 rate constants are in the range from 3×10^{-10} cm³·s⁻¹ up to 8×10^{-10} cm³·s⁻¹, even for low Xe pressures (27–133 hPa).

A review of the literature data on this subject gives only little evidence of existing "third order" energy transfer from other rare gases to molecules (3). Collins and Lee [2, 3] reported this process in the He-M system with the rate constants varying from 1×10^{-30} cm⁶·s⁻¹ for $M = Kr \text{ to } 8 \times 10^{-30} \text{ cm}^{6} \text{ s}^{-1} \text{ for } M = C_3 H_8$. For the Ar-M system, the only evidences found for the existence of such process are for the Ar-N₂ system [5] and our recent pulse radiolysis data for the Ar-H₂O system [9].

In this paper, the results of the investigations of the energy transfer processes in $Ar-O_2$ system will be presented.

Experimental

The pulse radiolysis system is based on SINUS-5 (produced by the Institute of High Energy, Tomsk, Russia) pulsed electron accelerator giving 12 ns single 350 keV electron pulses of total energy about 8 J and dose rate $D_r = (6.9 \pm 0.6) \times 10^{26} \text{ eV} \cdot \text{g}^{-1} \cdot \text{s}^{-1}$.

Ar-O₂ and Ar-O₂-SF₆ mixtures were irradiated in a stainless steel vacuum-proof chamber of volume 1000 cm^3 mounted on the accelerator output. The gases pressure in the reaction chamber was measured within 1% with an MKS 116A Baratron pressure transducer.

A xenon arc UV-VIS lamp (XHBO 150 W) was used as an analysing light source in the reaction chamber. A nine-reflection multiple-pass system with outside mounted mirrors was used for the observation of transients ($\lambda = 91$ cm). For more details see our previous papers [7, 9].

The time-resolved absorption spectra of ozone at $\lambda = 260$ nm (near the maximum, $\lambda_{max} = 254$ nm) formed during irradiation of the Ar-O₂ mixtures after passing through a 7400 Applied Physics 0.5-m monochromator were amplified by a Hamamatsu (R928) photomultiplier and registered by a 2440 Tektronix digital oscilloscope coupled to a PC computer. Typical oscilloscope absorption traces of ozone are shown in Fig. 1. The

Fig. 1. The plots of $1/\Delta G(O_3)$ vs. $[Ar]^2/[O_2]$. (**m**) – the total pressure 931 hPa, P(O₂) range 8–186 hPa (•) – the total pressure 798 hPa P(O₂) range 13–130 hPa; (**\lepha**) – the total pressure 655 hPa, P(O₂) range 13–107 hPa. For O₂ pressures above 60 hPa, the amount of ozone produced directly in the radiolysis of O₂ were subtracted from the total ozone amount produced in the Ar-O₂ mixture. For the intercepts and slopes of the lines see data in Table 1. Insert figure – typical oscilloscope absorption trace of ozone registered at $\lambda = 260$ nm in the pulse radiolysis of Ar-O₂ mixture. (P(Ar) = 798 hPa and P(O₂) = 133 hPa.)

Simplex method was used for the fitting of experimental absorbance *vs*. time curves using a kinetic equation of stable species formation:

(5)
$$A(t) = A_{\max}(1 - \exp(-k_{\exp} \cdot t))$$

where A_{max} – maximum ozone absorbance, k_{exp} – experimental pseudo-first order rate constant of ozone formation. The $G(O_3)$ values were found on the basis of ozone dosimetry ($G(O_3) = 6.2$ for the $O_2 + 0.5\%$ SF₆ system [9]).

Oxygen and argon gases from Linde Gas Poland were used without purification. The SF₆ gas obtained from Merck was of research purity and before use was purified by "trap to trap" cycles. All experiments were performed at ambient temperatures (295 \pm 3 K).

Results and discussion

In pulse radiolysis of the Ar/O_2 mixtures only ozone is formed as a stable product. As the stopping power is almost the same for Ar and O_2 (S(O₂) = 1.102 and S(Ar) = 1.14 [6]) at low O_2 concentrations (<10.0%), approximately all the amount of ozone was formed via sensitized process in which the energy is absorbed by argon and then transferred into O_2 molecules.

Earlier studies of rare gase radiolysis mechanism and kinetics showed that the electronically excited $Ar({}^{3}P_{1,2})$, denoted below as Ar^{**} , and higher excited Ar(4p,4d) atoms denoted below as Ar^{**} are formed. About 40% of all the excited Ar atoms formed are in the lowest 4s states and the rest are in the $Ar^{**}(4p,4d)$ states [14]. The Ar^{*} and Ar^{**} atoms decay via energy transfer processes to O_{2} molecules competing with the process of Ar_{2}^{*} formation. A simplified reaction scheme for Ar-sensitized radiolysis of O_{2} is shown below:

(6) $\operatorname{Ar} \xrightarrow{e} \operatorname{Ar}^*, \operatorname{Ar}^{**}$

(7)
$$\operatorname{Ar}^*, \operatorname{Ar}^{**} + 2\operatorname{Ar} \to \operatorname{Ar}_2^* + \operatorname{Ar}$$

(1)
$$\operatorname{Ar}^*, \operatorname{Ar}^{**} + \operatorname{O}_2 \to \operatorname{O}_2^* + \operatorname{Ar} \to \operatorname{products}(\operatorname{O}_3)$$

(2a)
$$Ar^*, Ar^{**} + Ar + O_2 \rightarrow O_2 + Ar_2^*$$

(2b)
$$\operatorname{Ar}^*, \operatorname{Ar}^{**} + \operatorname{Ar} + \operatorname{O}_2 \to \operatorname{O}_2^* + \operatorname{Ar}_2^* \to 2O + \operatorname{Ar}$$

- (8a) $O_2(B^3\Sigma_u^-) \rightarrow O({}^3P) + O({}^1D)$
- (8b) $O_2(A^3\Sigma_u^+) \rightarrow O(^3P) + O(^3P)$
- (8c) $O_2(B^1\Sigma_g^+) \rightarrow O({}^3P) + O({}^3P)$

(9)
$$O(^{1}D) + O_{2} \rightarrow O(^{3}P) + O_{2}$$

(10)
$$O(^{3}P) + 2O_{2} \rightarrow O_{3} + O_{2}$$

The steady state kinetic analysis of the above reaction scheme leads to the kinetic equation for the $G(O_3)$ dependence on O_2 and Ar concentrations for two cases:

(11)
$$\frac{1}{G(O_3)} = \frac{1}{2G(Ar^*)} \cdot \left(1 + \frac{k_7[Ar]^2}{k_1[O_2]} + \frac{k_{2a}[Ar]}{k_1}\right)$$

(12)
$$\frac{1}{G(O_3)} = \frac{1}{2G(Ar^*)} \cdot \left(\frac{\left(1 + \frac{k_7[Ar]^2}{k_1[O_2]} + \frac{k_{2b}[Ar]}{k_1}\right)}{\left(1 + \frac{k_{2b}[Ar]}{k_1}\right)} \right)$$

Kinetic eq. (11) takes into account reaction (2a) (the ozone precursors i.a. O atoms are not formed) and (12) takes into account reaction (2b) (reaction (2b) leads to O atoms – ozone precursors).

Earlier studies of the energy transfer processes for the Xe-M systems showed that for the lowest Xe(6s) states the third order energy transfer processes do not lead to the dissociation of such molecules as H_2S or C_2H_6 [19], but in pulse radiolysis study of the Xe-RX system (RX = CH₂F₂, CHF₃, CHF₂Cl, CHFCl₂ and CF₃Cl) the products of the third order energy transfer reaction were observed (XeCl^{*}/XeF^{*} excimers) [20]. It seems that in the case of radiolysis of the Ar-O₂ systems the third order energy transfer process should also lead to the excited O₂ molecules which then dissociate to O atoms.

For the constant Ar concentrations eqs. (11) and (12) give the linear plots of $1/G(O_3)$ vs. $[Ar]^2/[O_2]$:

(13)
$$\frac{1}{G(O_3)} = A + B \frac{[Ar]^2}{[O_2]}$$

where:

$$\mathbf{A} = \frac{1}{2G(\mathbf{Ar}^{*,**})} \cdot \left[1 + \frac{k_{2a}[\mathbf{Ar}]}{k_1}\right] \quad \text{for (11) and}$$

$$A = \frac{1}{2G(Ar^{*,**})} \qquad \text{for (12)}$$

B =
$$\frac{k_7}{2G(Ar^{*,**})k_1}$$
 for (11) and

$$B = \frac{k_7}{2G(Ar^{*,**})(k_1 + k_{2b}[Ar])} \quad \text{for (12)}$$

Figures 1 and 2 show the experimental plots of $1/G(O_3)$ vs. $[Ar]^2/[O_2]$. The obtained intercepts (A-values) and slopes (B-values) are shown in Table 1.

From the intercept values (A), the radiation yields $G(\text{Ar}^{*,**}) = 2.83 \pm 0.22$ for the Ar-O₂ system and $G(\text{Ar}^{*,**}) = 1.0 \pm 0.1$ for the Ar-O₂-SF₆ system were found. The first yield is in good agreement with the literature value $G(\text{Ar}^{*,**}) = 3.05$ [8]. In the radiolysis of the Ar-O₂ system in the presence of SF₆ as an electron

Table 1. The kinetic parameters obtained from $1/G(O_3)$ vs. $[Ar]^2/[O_2]$ plots shown in Figs. 1 and 2 and k_1 rate constants calculated for $k_7 = 1.28 \times 10^{-30}$ cm⁶·s⁻¹ and $k_2 = 0$

P(Ar) [hPa]	А	B·10 ²² [cm ³ /molec.]	$((A/B)\cdot k_7 \times 10^{10})$ $(k_1))$ [cm ³ ·s ⁻¹]
		Ar-O ₂	
666	0.159 ± 0.008	2.84 ± 0.27	7.2 ± 0.8
800	0.183 ± 0.017	2.53 ± 0.43	9.3 ± 1.5
933	0.194 ± 0.110	2.27 ± 0.11	10.95 ± 0.6
		$Ar-O_2 + 0.5\% SF_6$	
800	0.453 ± 0.029	7.00 ± 0.50	8.3 ± 0.6

scavenger much lower $G(\operatorname{Ar}^{*,**}) = 1.0$ value was found what suggests that a large amount excited Ar atoms $(G(\operatorname{Ar}^{*,**}) = 1.8)$ are produced via Ar ionization processes and then ion recombination.

In Table 1, there are also shown the two body energy transfer k_1 rate constants calculated from (13) for $k_{2a} = 0$, $k_{2b} = 0$ and $k_7 = 1.28 \times 10^{-30}$ cm⁶·s⁻¹. The k_7 rate constant taken for calculation is the mean value from the literature data ($k_7 = 1.23 \times 10^{-30}$ cm⁶·s⁻¹[1]; 1.44×10^{-30} cm⁶·s⁻¹[1]; 1.18×10^{-30} cm⁶·s⁻¹[16]. The k_1 rate constant varied from 6.15×10^{-10} cm³·s⁻¹ to 11.7×10^{-10} cm³·s⁻¹ (see data in Table 1). The k_1 rate constant found from these experiments is much higher than previously found for energy transfer from Ar(4s) to $O_2 k_1 = 2.2 \times 10^{-10}$ cm³·s⁻¹ [15] and close to Sadeghi *et al.* [14] quenching rate constants for Ar(2p_1) ($k_1 = 7.6 \times 10^{-10}$ cm³·s⁻¹), Ar(2p_5), ($k_1 = 7.2 \times 10^{-10}$ cm³·s⁻¹), Ar(2p_6), ($k_1 = 4.6 \times 10^{-10}$ cm³·s⁻¹) and Ar(2p_8), ($k_1 = 6.3 \times 10^{-10}$ cm³·s⁻¹).

Taking the literature energy transfer rate constants for Ar(4s) equal to 2.2×10^{-10} cm³·s⁻¹ [5, 15], for Ar(4p) states equal to 7×10^{-10} cm³·s⁻¹ [14] and the contribution of Ar(4s) states equal to 40% of all Ar excited states formed in pulse radiolysis of argon [20], the k_1 rate

Fig. 2. The plot of $1/\Delta G(O_3)$ vs. $[Ar]^2/[O_2] - (\blacksquare)$ – the total pressure 798 hPa + 0.5% SF₆, P(O₂) range 13–107 hPa. For O₂ pressures above 60 hPa, the amount of ozone produced directly in the radiolysis of O₂ were subtracted from the total ozone amount produced in the Ar-O₂ mixture. For the intercept and slope of the line see data in Table 1.

Fig. 3. The plots of (A/B)· $k_7 vs.$ [Ar]. Solid line for $k_1 = 5 \times 10^{-10} \text{ cm}^3 \cdot \text{s}^{-1}$ and $k_2 = 2.3 \times 10^{-29} \text{ cm}^6 \cdot \text{s}^{-1}$. Dotted lines – simulations according to eq. (14) taking $k_1 = 4 \times 10^{-10} \text{ cm}^3 \cdot \text{s}^{-1}$ and $k_2 = 2.7 \times 10^{-29} \text{ cm}^6 \cdot \text{s}^{-1}$ (lower line) or $k_1 = 6 \times 10^{-10} \text{ cm}^3 \cdot \text{s}^{-1}$ and $k_2 = 1.8 \times 10^{-29} \text{ cm}^6 \cdot \text{s}^{-1}$ (upper line).

constant (energy transfer rate constant from both Ar(4s) and Ar(4p) states) value can be estimated as being equal to $(5.0 \pm 1.0) \times 10^{-10}$ cm³·s⁻¹. As our experimental k_1 values are higher than the above k_1 value this can be the evidence of the contribution of the third order energy transfer process (reactions (2a) and/or (2b)) in the sensitized Ar-O₂ radiolysis.

In Fig. 3, the plot of $(A/B) \cdot k_7 vs$. [Ar] concentration is shown. The linear dependence has been expected if reactions (2a) and/or (2b) would be included into the reaction scheme as from eqs. (11), (12) and (13) we have:

(14)
$$\frac{\mathbf{A}}{\mathbf{B}} \cdot k_7 = k_1 + k_2 [\mathbf{Ar}]$$

As it is seen, our experimental data can be fitted as a linear dependence of $(A/B) \cdot k_7 vs$. argon pressure (the point at [Ar] = 0 was taken as being equal to 5×10^{-10} cm³·s⁻¹). The k_2 rate constant was found to be $(2.3 \pm 0.6) \times 10^{-29}$ cm⁶·s⁻¹. The simulations of eq. (14) for lower and higher k_1 values at [Ar] = 0 ($k_1 = 4 \times 10^{-10}$, and 6×10^{-10} cm³·s⁻¹) give the k_2 rate constants equal to 2.7×10^{-29} cm⁶·s⁻¹ and 1.8×10^{-29} cm⁶·s⁻¹, respectively.

Unfortunately, due to the scatter of results and a relatively small Ar pressure range (666–933 hPa) at which the experiments were done, rather a low accuracy of k_1 and k_2 rate constants must be pointed out. The above discussion shows that the third order energy transfer rate constant, k_2 , in the electron beam irradiated Ar-O₂ system should be in the range from 1.8×10^{-29} to 2.7×10^{-29} cm⁶·s⁻¹. It is in agreement with the data for Ar-H₂O pulse radiolysis study where the third order energy transfer rate constant was found to be (1.8 ± 1.4) $\times 10^{-29}$ cm⁶·s⁻¹[9].

The kinetics of ozone formation

Earlier studies on the kinetics of ozone formation showed that ozone is produced only in reaction (10)

Fig. 4. The plots of $k_{exp} vs. [O_2]$: (**■**) – the total pressure of Ar + $O_2 - 931$ hPa – $k_{10} = (5.71 \pm 0.11) \times 10^{-15}$ cm³·s⁻¹; (**●**) – the total pressure of Ar + $O_2 - 798$ hPa, $k_{10} = (4.97 \pm 0.08) \times 10^{-15}$ cm³·s⁻¹; (**▲**) – the total pressure of Ar + $O_2 - 655$ hPa, $k_{10} = (5.46 \pm 0.17) \times 10^{-15}$ cm³·s⁻¹.

with the rate constant $k_{10} = 2.8 \times 10^{-34} \text{ cm}^6 \text{ s}^{-1}$ [13] (high pressure limit) as the all O(¹D) atoms are quenched to O(³P) in a few nanoseconds ($k_9 = 4 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$ [4]) by O₂ molecules.

There is also strong evidence that it is a two-step process in which the excited $O_3({}^1A_1)^*$ and $O_3({}^3B_2)$ molecules are formed. Stable ozone $(O_3({}^1A_1))$ molecules are produced by the collisions of $O_3({}^1A_1)^*$ and $O_3({}^3B_2)$ with O_2 molecules [13].

From the time resolved ozone absorption spectra, we have found pseudo-first order rate constants (k_{exp}) of ozone formation. In Fig. 4 there are shown the plots of k_{exp} vs. O₂ concentrations at constant Ar pressures. As it is seen, linear dependencies were found for all the experimental series. The slopes can be assigned to the two-body deactivation of O₃ excited molecules by O₂:

$$(10) \qquad \qquad O_3^* + O_2 \rightarrow O_3 + O_2$$

The experimental value of k_{10} is equal to $(5.4 \pm 0.3) \times 10^{-15} \text{ cm}^{3} \text{s}^{-1}$.

The analysis of Ramirez *et al.* [13] of the mechanism of ozone formation suggests that the k_{10} rate constant should be treated as a sum of the rates for reactions:

(15)
$$O_3({}^{3}B_2) + O_2 \rightarrow O_3({}^{1}A_1) + O_2$$

 $k_{15} = 2 \times 10^{-15} \text{ cm}^3 \cdot \text{s}^{-1}[13]$

(16)
$$O_3^*({}^{1}A_1) + O_2 \rightarrow O_3({}^{1}A_1) + O_2$$

 $k_{16} = 10 \times 10^{-15} \text{ cm}^3 \text{s}^{-1}[13]$

As the $[O_3^*] = [O_3(^3B_2)] + [O_3^*(^1A_1)]$, from the k_{10} , k_{15} and k_{16} rate constants it should be found that the yields of $O_3(^3B_2)$ and $O_3^*(^1A_1)$ states are equal to 0.575 and 0.425, respectively. This is in agreement with Ramirez *et al.* [13] data, who reported that about 60% of all excited ozone molecules are formed in $O_3(^3B_2)$ states and the rest are $O_3^*(^1A_1)$ molecules.

Conclusions and remarks

The analysis of the data from pulse radiolysis of the Ar-O₂ system showed that the excited Ar atoms are formed with the total yield $G(Ar^*) = 2.83 \pm 0.22$. In the presence of an electron scavenger (SF₆) $G(Ar^*) = 1.0 \pm 0.1$, which means that Ar^{*} and Ar^{*} atoms are formed also via ionization processes with the yield $G(Ar^*) = 2.83 - 1.0 = 1.83$.

The O₂ excited molecules which then dissociate to O(³P) and O(¹D) atoms are produced in the two-body energy transfer process (reaction (1)) with the rate constant $k_1 = (8.9 \pm 2.1) \times 10^{-10} \text{ cm}^3 \cdot \text{s}^{-1}$, if it is the only possible energy transfer process (i.e. $k_2 = 0$). The analysis of the experimental data showed that there is also possible the third order energy transfer process (reaction (2)). It was found that the k_2 rate constant should be equal to $(2.3 \pm 0.6) \times 10^{-29} \text{ cm}^6 \cdot \text{s}^{-1}$. In this case, the k_1 rate constant should have a lower value $(5 \pm 1) \times 10^{-10} \text{ cm}^3 \cdot \text{s}^{-1}$.

It seems that the experiments for the higher Ar pressures should give stronger evidence for the participation of reaction (2) in the energy transfer process in Ar-sensitized radiolysis.

References

- 1. Birot A, Brunet H, Galy J, Millet P (1975) Continuous emission of argon and krypton in the near ultraviolet. J Chem Phys 63:1469–1473
- Collins CB, Lee FW (1979) Measurement of the rate coefficients for the bimolecular and termolecular deexcitation reactions of helium (2³S) with selected atomic and molecular species. J Phys Chem 70:1275–1285
- Collins CB, Lee FW, Tepfenhart WM, Stevefelt J (1983) Modelling of ion-molecule reactions at high pressures. J Chem Phys 98:6079–6090
- 4. DeMore WB, Sander SP, Golden DM *et al.* (1997) Chemical kinetics and photochemical data for use in stratospheric modelling. JPL Publication, evaluation number 12, 97-4:1
- Firestone RF, Chen Mon-Chao (1978) Bimolecular and "three-body" quenching of resonance state argon atoms by nitrogen at argon pressures in the 200–700 torr region. J Chem Phys 69:2947–2948
- Huyton DW, Woodward TW (1970) Ionisation measurements and some ionic reactions in gas phase radiolysis. Radiat Res Rev 2:205–234
- Jówko A, Kowalczyk J, Wojciechowski K, Foryś M (1996) Collisional quenching of Xe and Kr excited atoms by molecular additives. Radiat Phys Chem 48:481–486

- Jówko A, Symanowicz M, Bartkiewicz E (1985) The excitation energy transfer processes in the rare gashydrogen chloride systems. Radiat Phys Chem 26:49–52
- Jówko A, Wnorowski K, Kowalczyk J, Wojciechowski K (2001) Kinetics of the OH radical formation in the pulse radiolysis of Ar-H₂O gaseous mixtures. Radiat Phys Chem 61:27–34
- 10. Klots JH, Velazco JE, Setser DW (1979) Reactive quenching studies of $Xe(6s, {}^{3}P_{2})$ metastable atoms by chlorine containing molecules. J Chem Phys 71:1247–1262
- 11. Langhoff H (1988) The origin of the third continua emitted by excited rare gases. Opt Comm 68:31–34
- 12. Piper LG, Velazco JE, Setser DW, Lo G (1979) Reactions between argon and noble gases. J Chem Phys 69:3323–3340
- Ramirez JE, Bera Ranajit K, Hanrahan RJ (1984) Formation of ground state ozone on pulse radiolysis of oxygen. Radiat Phys Chem 23:685–688
- Sadeghi N, Setser DW, Francis A, Czarnetzki U, Dobele HF (2001) Quenching rate constants for reactions of Ar(4p'[1/2]₀, 4p[1/2]₀, 4p[3/2]₂, 4p[5/2]₂) atoms with 22 reagent gases. J Chem Phys 115:3144–3153
- Velazco JE, Klots JH, Setser DW (1978) Rate constants and quenching mechanisms for the metastable states of argon, krypton and xenon. J Chem Phys 69:4357–4372
- Wieme W, Lenaerts J (1981) Excimer formaton in argon, krypton and xenon discharge afterglows between 200 and 400 K. J Chem Phys 74:483–493
- Wojciechowski K (1998) The mechanism and kinetics of energy transfer processes in Xe-CCl₄-M (M = CO, CO₂) mixtures irradiated by xenon resonance light. Radiat Phys Chem 53:47–53
- Wojciechowski K (1998) The mechanism and kinetics of energy transfer processes in the Xe-CCl₄-M (M = CH₄, C₂H₂, C₂H₄, C₂H₆, C₃H₆ and C₃H₈). Radiat Phys Chem 53:37–46
- 19. Wojciechowski K, Foryś M (1999) The mechanism of three-body process of energy transfer from excited xenon atoms to molecules. Radiat Phys Chem 54:1–10
- 20. Wojciechowski K, Kowalczyk J, Jówko A (1998) Pulse radiolysis study of energy transfer processes in Xe-M mixtures ($M = CH_2F_2$, CHF₃, CHF₂Cl, CHFCl₂ and CF₃Cl). Radiat Phys Chem 53:417–424
- Wojciechowski K, Rosa M, Jówko A, Foryś M (1993) Energy transfer processes in the xenon sensitized photolysis of hydrogen chloride and carbon tetrachloride. Nukleonika 38;2:31–47
- Wojciechowski K, Rosa M, Symanowicz M, Jówko A, Foryś M (1994) Energy transfer processes in the xenon sensitised photolysis of SOCl₂, S₂Cl₂ and PCl₃. Nukleonika 39;4:35–50