Bioaccumulation of ¹³⁷Cs and ⁶⁰Co by *Helianthus annuus*

Miroslav Horník, Martin Pipíška, L'uboš Vrtoch, Jozef Augustín, Juraj Lesný

Abstract The ⁶⁰Co and ¹³⁷Cs bioaccumulation by *Helianthus annuus* L. was measured during 9 day cultivation at $20 \pm 2^{\circ}$ C in hydroponic Hoagland medium. Previous starvation for K⁺ and for NH₄⁺ 2.2 and 2.7 times, respectively, enhanced ¹³⁷Cs uptake rate. Previous cultivation in surplus of K⁺ ions 50 mmol·l⁻¹ has no effect on ¹³⁷Cs bioaccumulation rate. Both ¹³⁷Cs and ⁶⁰Co bioaccumulation significantly increase with dilution of basic Hoagland medium up to 1:7 for caesium and up to 1:3 for cobalt followed by mild decrease at higher dilutions. Root to shoot specific ¹³⁷Cs radioactivity ratio (Bq·g⁻¹/Bq·g⁻¹, fresh wt.) increased with dilution from 1.46 to 9.6–9.8. The values root to shoot specific radioactivity ratio for ⁶⁰Co were less dependent on the nutrient concentrations and were within the range 5.7 to 8.5. ¹³⁷Cs was localized mainly in young leaves (30%) and roots (39%) and ⁶⁰Co mainly in roots (67%) and leaves (20%). Obtained data showed less sensitivity of ⁶⁰Co uptake by sunflower on nutrient concentration in hydroponic media.

Key words Helianthus annuus • 60Co • 137Cs • bioaccumulation • starvation • autoradiography

M. Horník[⊠], M. Pipíška, L. Vrtoch, J. Augustín, J. Lesný Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, 2 Nam. J. Herdu Str., 917 01 Trnava, Slovak Republic, Tel.: +421335565384, Fax: +421335565185, E-mail: hornikm@ucm.sk

Received: 20 July 2005 Accepted: 24 August 2005

Introduction

Radionuclides exist in the environment either naturally or artificially by aboveground nuclear testing, nuclear accidents, and nuclear power generation [11]. Radionuclides characteristic of nuclear fission, such as ¹³⁷Cs, ⁹⁰Sr and ⁶⁰Co, are of environmental concern due to their relatively long half-life, emission of γ -radiation during decay and rapid incorporation into living organisms. There is a great need for reliable and inexpensive technologies that can reduce toxic metal concentrations to environmentally acceptable levels [3]. Recently, scientists and engineers have started to generate costeffective technologies that include the use of microorganisms, biomass and live plants in the cleaning process of polluted areas [1, 2, 10]. There is considerable interest in remediation of sites contaminated by these isotopes using extraction by plants (phytoextraction) that do not enter the human food chain [7]. The ecological problems related to heavy metals and radionuclides are not dependent only on their total content and radioactivity in the soil, but rather on their form of bonding and therefore their bioavailability. Therefore, several studies have been conducted using seedlings or adult plant, which have been cultivated in hydroponic conditions [4, 12]. Hydroponic growing plants have been also used as a model for bioaccumulation and translocation of radionuclides in aboveground parts of plants [9].

Our study presents data characterizing bioaccumulation of ¹³⁷Cs and ⁶⁰Co by sunflowers (*Helianthus annuus* L.) growing in hydroponic media and the influence of previous starvation for NH_4^+ and K^+ ions on these processes. Distribution and translocation of ¹³⁷Cs and ⁶⁰Co in plant tissues was evaluated by autoradiographic procedure. Caesium has unknown role in plant nutrition, however it can compete with potassium transport. Cobalt is necessary as a trace element for all cells but is toxic at higher concentrations.

Material and methods

Plant material

Seeds of sunflower (Helianthus annuus L.) were sterilized in 10% H₂O₂ solution for 20 min, germinated and grown in pots filled with granulated moist perlite as an inert carrier in day/night period 16/8 h at $20 \pm 2^{\circ}$ C. Hydroponic medium according to Hoagland [5] was used as a nutrient. After 21 days, seedlings were gently removed from perlite and roots were washed free of any adhering perlite fragments by distilled water. For experiments, plants of comparable weight and height were selected. Plants were then transferred to fresh hydroponic medium without perlite support. The following molar concentrations of salts were present in non-diluted Hoagland medium: 1.5 mM MgSO₄·7H₂O, 4.0 mM KNO₃, 4.0 mM CaCl₂, 1.87 mM NaH₂PO₄·2H₂O, 0.13 mM Na₂HPO₄·12H₂O, 0.06 mM FeSO₄·7H₂O, 4.0 mM NaNO₃, 3.17 mM NH₄Cl, 2.0 mM NH_4NO_3 , 1.39 mM H_3BO_3 , 0.0025 mM $Na_2MoO_4 \cdot 2H_2O$, 0.21 mM $MnSO_4 \cdot 5H_2O$, 0.023 mM ZnSO₄·7H₂O, 0.033 mM CuSO₄·5H₂O.

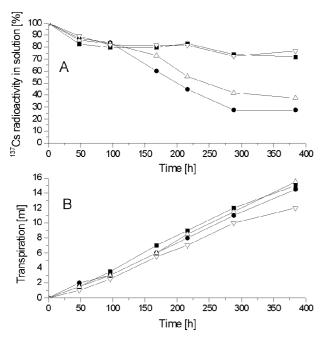
Influence of starvation for NH_4^+ and K^+ ions on ^{137}Cs bioaccumulation

Sunflower seedlings were pre-cultivated for 7 days at $20 \pm 2^{\circ}$ C in 1/4 diluted complete Hoagland medium and in the same medium where NH₄NO₃ and NH₄Cl or KNO3 were omitted in order to obtain condition for NH⁺₄ or K⁺ starvation and in medium supplemented with 50 mmol·l⁻¹ KCl. Cultivations were carried out in day/night period 16/8 h in periodically weighed Erlenmeyer flasks. Transpired water was refilled with distilled water. After pre-cultivation, plants were cultivated for 16 days in fresh four times diluted Hoagland medium labeled with ¹³⁷CsCl (50 kBq·l⁻¹, 2.5 µmol·l⁻¹ CsCl). In time intervals aliquot medium samples were taken and ¹³⁷Cs radioactivity measured. Gamma spectrometer scintillation detector 54BP54/2-X with well type crystal NaI(Tl), (Scionix, The Netherlands) and data processing software Scintivision32 (Ortec, USA) were used. ¹³⁷CsCl was obtained from Research Institute of Nuclear Energy, Trnava, Slovak Republic and ⁶⁰CoCl₂ from Alldeco Inc., Slovak Republic.

Influence of total nutrient content on bioaccumulation and translocation of 137 Cs and 60 Co

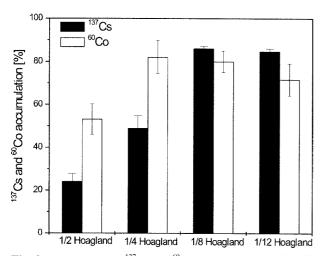
Cultivation media differing in total nutrient contents were prepared by dilution of Hoagland medium with distilled water in the ratio 1:1, 1:3, 1:7 and 1:11. Diluted media were supplemented with ¹³⁷Cs (25 kBq·I⁻¹, 1.25 μ mol·I⁻¹CsCl) and ⁶⁰Co (25 kBq·I⁻¹, 0.385 μ mol·I⁻¹CoCl₂), respectively. Plants were cultivated in prepared media for 9 days under similar conditions as described in the previous paragraph. Erlenmeyer flasks were periodically weighed and nutrient solution lost through transpiration was refilled with distilled water throughout the experiment. In time intervals aliquot samples of cultivation media were measured for determination of remaining radioactivity. At the end of experiments, roots were separated from shoots, blotted on filter paper and fresh weights recorded and radioactivity measured.

Distribution and translocation of ¹³⁷Cs and ⁶⁰Co in plant tissues


Plants from bioaccumulation experiments were evaluated for ¹³⁷Cs and ⁶⁰Co distribution by autoradiography. Roots were rinsed with distilled water and plants were pressed between two filter papers and airdried for 5 days at 20°C. ¹³⁷Cs and ⁶⁰Co in dried plant were detected by autoradiography by exposing X-ray films (HR-GB 100 NIF, FUJIFILM, Japan) for 60 days at room temperature.

Results and discussion

Bioaccumulation of ¹³⁷Cs by sunflower from hydroponic medium was proportional to the transpiration rate. Results of typical experiment are shown in Fig. 1A,B. Significant, approx. 2.2 fold increase in ¹³⁷Cs bioaccumulation rate was observed when sunflower plants were pre-cultivated in conditions of K⁺ ion starvation and 2.7 fold increase in conditions of or NH₄⁺ starvation. Starvation has no significant effect on transpiration rates. Pre-cultivation in surplus of K⁺ ions 50 mmol·l⁻¹ has no effect on ¹³⁷Cs bioaccumulation rate. Our data are in agreement with data published by Zhu *et al.* [13]. They observed significant increase in radiocaesium uptake by wheat seedlings after 3-day potassium starvation.


Both ¹³⁷Cs and ⁶⁰Co bioaccumulation rates increase with dilution of basic Hoagland medium up to 1:7 for caesium and up to 1:3 for cobalt followed by mild decrease at higher dilutions (Fig. 2). This effect can be explained by competition effect of mono or bivalent cations in more concentrated media and by limitation of metabolic activity by low nutrient concentration in diluted media. Among all alkaline metals and NH_4^+ it appears that K^+ is the most important cation that competes with Cs⁺ uptake by wheat [8].

Data presented in Fig. 2 represent total radionuclide uptake calculated from decrease of radioactivity form cultivation media. Distribution of radioactivity found in roots and shoots of sunflower grown in diluted media is shown in Fig. 3. The decrease of nutrient concentrations caused by dilution of media has little effect on ⁶⁰Co transport from roots to shoots. Observed root to shoot radioactivity ratio was within 1.54 to 1.85. On the contrary root to shoot ¹³⁷Cs ration increased with dilution from 0.22 to 2.16–2.47. It means, that caesium

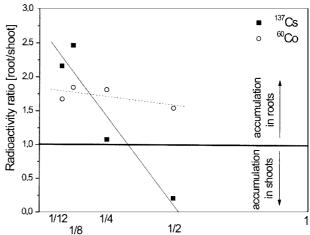


Fig. 1. Influence of starvation for NH_4^+ and K^+ ions in precultivation phase on ¹³⁷Cs bioaccumulation (A) and transpiration activity (B) of sunflower (*Helianthus annuus* L.). Pre-cultivation: Sunflower seedlings cultivated for 7 days at $20 \pm 2^{\circ}$ C in 1/4 diluted complete Hoagland medium HM (**–**–**–**), and in 1/4 HM without NH_4^+ (••••) or without K^+ ($\triangle - \triangle - \triangle$) ions and 1/4 HM supplemented with 50 mmol·l⁻¹ K^+ ($\nabla - \nabla - \nabla$). Bioaccumulation: Sunflower seedlings cultivated for 16 days at 20 ± 2°C in 1 complete HM, supplemented with 2.5 µmol·l⁻¹ CsCl (50 kBq·l⁻¹). The fresh weight of individual plants at the end of experiments was 1.47 ± 0.10 g (SD, n = 8).

is preferentially accumulated in root tissue and its transport to shoot organs is limited in media with low nutrient contents.

Fig. 2. Dependence of ¹³⁷Cs and ⁶⁰Co bioaccumulation (in %) by sunflower (*Helianthus annuus* L.) on nutrient concentration. Sunflower seedlings cultivated for 9 days at $20 \pm 2^{\circ}$ C in diluted Hoagland medium (1/2, 1/4, 1/8, and 1/12), supplemented both with 1.25 μ mol·l⁻¹ CsCl (25 kBq·l⁻¹) and 0.385 μ mol·l⁻¹ CoCl₂ (25 kBq·l⁻¹). The fresh weight of individual plants at the end of experiments was 1.58 \pm 0.18 g (SD, n = 11). Root to shoot biomass ratio (fresh weight basis): 0.20.

Fig. 3. The effect of dilution of Hoagland cultivation media on ¹³⁷Cs and ⁶⁰Co distribution between root and shoot parts of sunflower (*Helianthus annuus* L.). Data and description in Fig. 2.

Root to shoot specific ¹³⁷Cs radioactivity ratio $(Bq\cdot g^{-1}/Bq\cdot g^{-1})$, fresh wt.) increased with dilution from 1.46 to 9.6–9.8. The values root to shoot specific radioactivity ratio for ⁶⁰Co were less dependent on the nutrient concentrations and were within the range 5.7 to 8.5.

Efficient translocation of ¹³⁷Cs into young sunflower leaves is evident from autoradiographic presentation in Fig. 4A and tendency to accumulate ⁶⁰Co in root in Fig. 4B. Direct measurements showed that in the case of radiocaesium young leaves accumulated 30% and root 39% of the total amount of ¹³⁷Cs accumulated by

Fig. 4. Autoradiographic visualization of ¹³⁷Cs (A) and ⁶⁰Co (B) distribution in sunflowers (*Helianthus annuus* L.) after 9 days cultivation at $20 \pm 2^{\circ}$ C in 1/4 Hoagland medium traced with 25 kBq·l⁻¹¹³⁷Cs (1.25 µmol·l⁻¹ CsCl) and 25 kBq·l^{-1 60}Co (0.385 µmol·l⁻¹ CoCl₂), respectively.

sunflower plants. Radiocobalt was predominantly accumulated in roots (67%) and only 20% was translocated in leaves.

Diversity of participation of caesium in metabolic pathways is rather limited and transport routes will be similar in many environments. Radiocaesium as contaminant will be mainly fixed in aluminosilicates and therefore not available for plant roots in clay soils. Cobalt ⁶⁰Co as a potential contaminant from the places of radioactive waste storage represents more complicated problem. Cobalt can exist in Co(III) or Co(II) form in ecosystems and can undergo oxido-reduction conversions. Co(III) is especially mobile when complexed in organic complexes [6]. Microorganisms in soil and root systems will change chemical forms and of cobalt and markedly influence mobility and bioavailability. However, limited data were published and therefore the next research has to be done mainly for explanation of the role of bacteria with pronounced oxido-reduction activities.

Acknowledgments This work is a part of the State research and development programme "Quality of life-health, nutrition and education", grant No. 03VE04SE06 – Phytoremediation of heavy metal contaminated soil.

References

 Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley-Interscience, New York, pp 53–70

- 2. Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175
- Dushenkov S, Kapulnik Y (2000) Phytofiltration of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley-Interscience, New York, pp 89–106
- Fritioff A, Kautsky L, Greger M (2005) Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ Pollut 133:265–274
- 5. Hoagland DR (1920) Optimum nutrient solutions for plants. Science 52:562–564
- Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425
- Pipíška M, Lesný J, Horník M, Augustín J (2004) Plant uptake of radiocesium from contaminated soil. Nukleonika 49;S1:S9–S11
- 8. Shaw G (1993) Blockade by fertilizers of caesium and strontium uptake into crops: effect on the root uptake process. Sci Total Environ 137:119–133
- Soudek P, Tykva R, Vaněk T (2004) Laboratory analyses of ¹³⁷Cs uptake by sunflower, reed and poplar. Chemosphere 55:1081–1087
- Volesky B (2003) Biosorption process simulation tools. Hydrometallurgy 71:179–190
 Zhu YG, Shaw G (2000) Soil contamination with
- Zhu YG, Shaw G (2000) Soil contamination with radionuclides and potential remediation. Chemosphere 41:121–128
- 12. Zhu YG, Shaw G, Nisbet AF, Wilkins BT (2000) Effect of potassium starvation on the uptake of radiocaesium by spring wheat (*Triticum aestivum* cv. Tonic). Plant Soil 220:27–34
- Zhu YG, Shaw G, Nisbet AF, Wilkins BT (2002) Effect of external potassium supply and plant age on the uptake of radiocaesium (¹³⁷Cs) by broad bean (*Vicia faba*): interpretation of results from a large-scale hydroponic study. Environ Exp Bot 47:173–187