Bioaccumulation of ¹³⁷Cs in wild mushrooms collected in Poland and Slovakia

Michał A. Bazała, Grażyna Bystrzejewska-Piotrowska, Andrea Čipáková

Abstract Activities of caesium in the mushrooms collected at different localities in Poland and Slovakia have been compared. Discrimination factor, defined as $[(Bq\cdot kg^{-1} {}^{137}Cs in caps)]/[(Bq\cdot kg^{-1} {}^{40}K in caps)]/[(Bq\cdot kg^{-1} {}^{137}Cs in stipes)]/(Bq\cdot kg^{-1} {}^{40}K in stipes)], was used to explain mechanisms of uptake and transport of radiocaesium in fungi. The collected specimens were divided into caps and stipes. Activities of <math>{}^{137}Cs$ and ${}^{40}K$ were measured using a multichannel gamma spectrophotometer with HPGe(Li) detector. The highest accumulation of ${}^{137}Cs$ was found in the samples of *Xerocomus badius, Suillus luteus* and *Tricholoma equestre* (2.7, 1.9 and 1.2 kBq·kg⁻¹, respectively). *T. equestre* and *S. luteus* proved to hyperaccumulate caesium since ${}^{137}Cs$ levels in the caps were two orders of magnitude higher than in the soil while only one order higher in the case of *X. badius*. Transport of ${}^{137}Cs$ from stipe to cap in fruitbody is directly related to K concentration with lack of similar dependence in the case of transport from soil to cap. There is no dependence between activity of ${}^{137}Cs$ in the analyzed fruitbodies and its activity in the soil, which makes mushrooms controversial bioindicators of ${}^{137}Cs$ -pollutted soils.

Key words bioaccumulation of caesium • ¹³⁷Cs • biomonitoring • mushrooms • potassium

M. A. Bazała[⊠], G. Bystrzejewska-Piotrowska Isotope Laboratory, Faculty of Biology, Warsaw University, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel.: +48 22-5542302, Fax: +48 22-5541106, E-mail: bazalka@biol.uw.edu.pl

A. Čipáková
Regional Public Health Authority,
1 Ipel'ská Str., Košice, Slovak Republic

Received: 25 August 2005

Introduction

Mushrooms are characterised by high ability to accumulate radiocaesium [1–5, 7], however, huge differences of ¹³⁷Cs accumulation in fruitbodies of different species have not been explained yet. This phenomenon can be due to unequal level of decay and composition of the substrate. Undoubtedly, it is related to the ability of mycelium to decompose organic substrate and to form mycorrhizal associations with plants.

Caesium radioisotopes are of high environmental concern due to relatively long half-life, emission of gamma radiation and rapid incorporation into living organisms [6]. As we previously described [2], ability of mushrooms to accumulate radiocaesium is mainly due to their genetic constitution. Plant roots absorb caesium less efficiently than its nutrient analogue, potassium [1]. This is illustrated by the so-called Cs/K discrimination factor (DF). DF values greater than 1 unit indicate that ¹³⁷Cs is more effectively transported than ⁴⁰K.

The problem of caesium/potasium discrimination in fungi, with respect to the group phylogenesis, has not yet been solved and requires further studies involving a greater number of species. The aim of this study is to compare the fate of caesium in the selected species of mushrooms obtained from various localities in Poland and Slovakia. The Cs/K discrimination factors have been calculated in order to explain the mechanism of uptake and transport of radiocaesium in fungi.

	Species	Locality	Sample	⁴⁰ K		¹³⁷ Cs	¹³⁷ Cs		DF	
Family				[Bq·kg ⁻¹ d.w.]	SD	[Bq·kg ⁻¹ d.w.]	SD	cap/stipe	cap/soil	
Boletaceae	X. badius	site 2	cap stipe soil	1120 930 250	9 80 60	2700 2500 200	$140.0 \\ 140.0 \\ 6.0$	0.90	3.01	
		site 6	cap stipe soil	1586 1761 386	301 340 60	813 768 51	47.0 44.0 3.0	1.18	3.88	
	S. bovinus	site 1	cap stipe soil	630 355 293	7 91 26	675 261 22	37.3 15.0 1.3	1.46	14.14	
	S. luteus	site 1	cap stipe soil	696 387 278	7 54 26	1879 766 20	103.0 42.2 1.2	1.36	37.80	
		site 3	cap stipe soil	1270 1829 322	162 390 27	534 209 6	30.4 15.0 0.1	3.68	22.16	
	S. grevillei	site 4	cap stipe soil	1895 2295 384	250 371 31	516 304 47	30.0 20.0 2.7	2.06	2.22	
	L. scabrum	site 1	cap stipe soil	873 440 273	8 84 26	249 85 26	14.0 5.4 1.5	1.47	2.99	
		site 5	cap stipe soil	1417 762 327	158 133 28	40 27 11	3.9 3.0 0.9	0.8	0.83	
		Humenné	cap stipe	1886 1375	27 34	2 3	$\begin{array}{c} 0.4 \\ 0.8 \end{array}$	0.59		
	B. edulis	site 1	cap stipe soil	630 340 279	6 50 28	450 230 44	30.0 10.0 2.5	1.06	4.53	
		Sajzy	cap stipe soil	1670 450 330	37 110 26	200 140 12	10.0 9.0 0.9	0.38	3.29	
		site 5d	cap stipe soil	1267 768 355	140 92 30	146 81 6	9.2 5.2 0.6	1.1	6.39	
		site 5b	cap stipe soil	939 800 327	77 215 28	80 67 11	5.0 4.9 0.9	1.01	2.47	
		site 8	cap stipe soil	1360 782 385	184 139 32	29 20 16	3.6 2.7 1.1	0.81	0.52	
Tricholo- mataceae	T. equestre	site 7	cap stipe soil	1699 1477 687	140 250 40	1180 169 10	6.5 11.7 0.8	6.08	46.79	
	T. portenosum	site 7	cap stipe soil	1920 1693 687	240 271 40	110 45 10	8.0 6.0 0.8	2.16	3.86	
Amanitaceae	A. citrina	site 2	cap stipe soil	909 379 276	9 69 30	189 51 45	10.9 3.5 2.6	1.31	3.31	

Table 1. Activities of ⁴⁰K and ¹³⁷Cs in cap, stipe, soil and discrimination factor for cap/stipe and cap/soil

Family	Species	Locality	Sample	⁴⁰ K		¹³⁷ Cs		DF	
				[Bq·kg ⁻¹ d.w.]	SD	[Bq·kg ⁻¹ d.w.]	SD	cap/stipe	cap/soil
Amanitaceae	A. muscaria	site 5b	cap	154	12	24	2.1		
			stipe	1061	115	15	2.1	1.11	0.45
			soil	327	28	11	0.9		
		site 2	cap	1610	130	500	30.0		
			stipe	590	60	140	8.0	1.54	1.26
			soil	320	3	30	2.0		
Russulaceae	R. foetens	Jasov	cap	2036	37	118	2.3		
	J		stipe	1996	75	95	4.4	1.23	
			soil	565	17	56	1.4		
	Russula mix	Soroška	cap	1732	79	13	2.5		
		borobila	stipe	1936	100	15	3.6	0.98	
	Russula mix	Svidník	cap	1605	77	8	2.0		
			stipe	1593	80	12	3.1	0.7	
	Russula mix	Lipníky	cap	1474	62	6	1.7		
		1 5	stipe	1432	78	12	3.1	0.5	
	L. piperatus	Humenné	cap	1115	28	8	0.7		
	I I		stipe	1356	53	8	1.5	1.2	
Agaricaceae	M. procera	Soroška	cap	1876	75	11	2.6		
	r · · · · · · · · ·	20100111	stipe	1266	85	20	4.2	0.39	

Table 1. continued

Materials and methods

The fruitbodies of mushroom species Macolepiota procera, Lactarius piperatus, Leccinum scabrum, Russula foetens, Russula virescens and Russula cyanoxantha (mix of two species) were collected in certain localities in the East of Slovakia in 2004. The fruitbodies of mushroom species Xerocomus badius, Leccinum scabrum, Boletus edulis, Suillus luteus, Suillus grevillei, Suillus bovinus, Tricholoma equestre, Tricholoma portenosum, Amanita citrina and Amanita muscaria were collected in Poland, in the forest near Aleksandrów Kujawski (N 52° 54' E 18° 39'). One sample of B. edulis was collected near Sajzy village (N 53° 56' E 22° 08'). Aboveground parts of the mushrooms were divided into caps and stipes, dried and homogenized. Specific activities of ¹³⁷Cs in the obtained samples were measured spectrometrically using a multichannel spectrophotometer with HPGe(Li) detector (Canberra Series 35 Plus). Data acquisition and analysis were carried out using Gamat and Genie 2000 software. Discrimination factor is defined as:

$$DF = \frac{\left(\frac{A\left(^{137}Cs\right)_{cap}}{A\left(^{40}K\right)_{cap}}\right)}{\left(\frac{A\left(^{137}Cs\right)_{stipe}}{A\left(^{40}K\right)_{stipe}}\right)}$$

where A are specific activities of ¹³⁷Cs or ⁴⁰K measured in the cap and stipe stamples, as marked in the subscript.

Results and discussion

The highest activity of ¹³⁷Cs was found in the samples of Xerocomus badius, Suillus luteus and Tricholoma equestre (2.7, 1.9 and 1.2 kBq·kg⁻¹, respectively), Table 1. Levels of 137 Cs in the caps of *T. equestre* and *S. luteus* were one hundred times higher than in soils, which proves ability of these species to hyperaccumulate caesium. Caps of Xerocomus badius and other analyzed mushrooms showed caesium levels to be only 10 times higher than the soil concentration. The both abovementioned hyperaccumulators have yellow pigmentation, therefore, it is hypothesized that the high accumulation of caesium is a result of pigment-bound caesium. As it has already been described [3, 4], Macrolepiota procera accumulates the lowest amounts of radiocaesium. It can be explained by the non-mycorrhizal character of Macrolepiota sp. and its anatomy. The most of the species accumulated caesium mainly in the caps. However, dissimilarities in caesium accumulation in various species may be due to different levels of tissue hydration, anatomical constitution and unequal age of the collected specimens.

The data obtained for DF cap/soil indicate that there is no correlation between the ¹³⁷Cs/⁴⁰K ratios in cap and the respective ratios in soils (Fig. 1). Nevertheless, as it was assumed earlier [2], this dependence exists between ¹³⁷Cs/⁴⁰K ratios in caps and the respective ratios in stipes (Fig. 2). An evidence for linear correlation of these ratios is given for the first time.

Our results (Figs. 1 and 2) indicate differences between mechanisms of uptake and transport of caesium. Lack of correlation between accumulation of ¹³⁷Cs in

Fig. 1. Correlation between ratios of activities of 137 Cs to 40 K in cap and 137 Cs to 40 K in soil. Numbers in brackets indicates points in figure. *X. badius:* site 2(1), site 6(2); *S. bovinus:* site 1(3); *S. luteus:* site 1(4), site 3(5); *S. grevillei:* site 4(6); *L. scabrum:* site 1(7), site 5(8); *B. edulis:* site 1(9), Sajzy (10), site 5d(11), site 5b(12), site 8(13); *T. equestre:* site 7(14); *T. portenosum:* site 7(15); *A. citrina:* site 2(16); *A muscaria:* site 5b(17), site 2(18); *R. foetens:* Jasov (19).

fruitbodies and ¹³⁷Cs/⁴⁰K ratio in soils (Fig. 1) shows the genus-dependent capability of wild mushrooms to accumulate ¹³⁷Cs. However, transport of ¹³⁷Cs from stipe to cap (Fig. 2) depends directly on ⁴⁰K concentration. The results show that transport of ¹³⁷Cs within the fruitbody carries on through the potassium channels, which is a much simpler mechanism than the corresponding transport in plants [2]. This shows a high efficiency of caesium transport and explains hyperaccumulation of ¹³⁷Cs in the fruitbodies of *T. equestre* and *S. luteus*. Lack of dependence between activity of ¹³⁷Cs in fruitbodies and soils makes mushrooms rather controversial bioindicators of ¹³⁷Cs soil pollution.

References

 Bystrzejewska-Piotrowska G, Nowacka R (2004) The distribution of ¹³⁷Cs in maize (*Zea mays* L.) and two millet species (*Panicum miliaceum* L. and *Panicum maximum* Jacq.) cultivated on the cesium-contaminated soil. Nukleonika 49:13–16

Fig. 2. Correlation between ratios of activities of 137 Cs to 40 K in cap and 137 Cs to 40 K in stipe. Numbers in brackets indicates points in figure. *X. badius:* site 2(1), site 6(2); *S. bovinus:* site 1(3); *S. luteus:* site 1(4), site 3(5); *S. grevillei:* site 4(6); *L. scabrum:* site 1(7), site 5(8), Humenné (9); *B. edulis:* site 1(10), Sajzy (11), site 5d(12), site 5b(13), site 8(14); *T. equestre:* site 7(15); *T. portenosum:* site 7(16); *A. citrina:* site 2(17); *A. muscaria:* site 5b(18), site 2(19); *R. foetens:* Jasov (20); *Russula* mix: Soroška (21), Svidník (22), Lipníky (23); *L. piperatus:* Humenné (24); *M. procera:* Soroška (25).

- Bystrzejewska-Piotrowska G, Urban PL, Stęborowski R (2003) Discrimination between ¹³⁷Cs and ⁴⁰K in the fruiting body of wild edible mushrooms. Nukleonika 48:155–157
- Čipáková A (2004) ¹³⁷Cs content in mushrooms from localities in eastern Slovakia. Nukleonika 49;S1:S25–S29
- Kalač P (2001) A review of edible mushroom radioactivity. Food Chem 75:29–35
- Linkov I, Yoshida S, Steiner M (2000) Fungi contaminated by radionuclides. Critical review of approaches to modeling. Proc of the 10th Int Congress of the Int Radiation Protection Association, Hiroshima, Japan
- Pipíška M, Lesný J, Horník M, Augustín J (2004) Plant uptake of radiocaesium from contaminated soil. Nukleonika 49;S1:S9–S11
- Řanda Z, Benada J, Horyna J, Klan J (1990) Mushrooms

 significant source of internal contamination by radiocaesium. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi natural environments. Elsevier, London, pp 169–178