Development of 111In-DTPA-human polyclonal antibody complex for long-term inflammation/infection detection

Abstract Human polyclonal antibody (HlgG) was successively labeled with 111In-indium chloride after residulation with freshly prepared cyclic DTPA-dianhydride. The best results of the conjugation were obtained by the addition of solid DTPA-dianhydride (0.1–0.3 mg) to 100 µl of the HlgG solution (0.2–0.4 mg/ml) at pH = 6 in phosphate buffer media at 25°C with continuous stirring for 30 min. Radio-thin-layer chromatography showed an overall radiochemical yield of 96–99% at optimized conditions (specific activity = 300–500 MBq/mg, radiochemical purity >98%). The final isotonic 111In-DTPA-HlgG complex was checked by radio-TLC to ensure the formation of only one species followed by filtration through a 0.22 µ filter. Preliminary long-term in vivo studies in turpentine-oil induced inflammation in rat model was performed to determine late complex distribution of the radioimmunoconjugate. The target/skin and target/blood ratios were 27 and 51 after 24 h, and 23 and 51 after 110 h, showing a high selectivity of the radiopharmaceutical for inflammatory lesions.

Key words radiopharmaceuticals • indium-111 • human polyclonal antibody • inflammation • turpentine oil

Introduction

Radiolabeled immunoglobulins have been prepared using various single photon emission computed tomography (SPECT) radioisotopes such as In-111 [12], Tc-99m [11], etc., out of which the only FDA approved radioimmunoconjugates are those containing In-111 radionuclide. ZevalinTM was approved by FDA for detection of lymphosarcoma and B cell lymphomas in 2002 [8]. ProstaScint, Mouse IgG1, 7E11-C5.3 antibody against PSA, conjugated with diethylene-triamine-pentaacetate (DTPA), has been successfully used in detection of prostate cancer [7]. Finally, OncoScint, another DTPA conjugated CYT-103 antibody is a valuable tool in the detection of colorectal and ovarian tumors in clinic [9].

111In-labeled HlgG has been extensively tested in a large number of clinical studies. It has shown excellent performance in the localization of musculoskeletal infection and inflammation [16]. In addition, good results have been reported in pulmonary infection, particularly in immunocompromised patients [1, 17], and abdominal inflammation [13].

In this study, a precise labeling strategy was employed using freshly-prepared DTPA cyclic dianhydride, with various HlgG concentrations. All experiments were checked by radiochemical tests and their immunoreac-
tivity against inflammatory lesions in rats. Finally, an optimized radiolabeling method for developing a highly reactive diagnostic tool for inflammation using 3.7×10^6 Bq 111In-DTPA-HIgG in experimental animals using a long term protocol study has been introduced for the first time.

Experimental

Materials

Sephadex G-50 was purchased from Pharmacia, Italy. DTPA (acid form), sodium acetate, phosphate buffer components methanol and ammonium acetate were purchased from Sigma-Aldrich Chemical Co. (UK). Cyclic DTPA dianhydride was freshly prepared and kept under a blanket of N_2. 1H-NMR spectra were obtained on a FT-80 (80 MHz) Varian instrument with tetramethylsilane as the internal standard. Infrared spectra were taken on a Perkin-Elmer 781 instrument (KBr disc). Thin-layer chromatography (TLC) of non-radioactive products was performed on polymer-backed silica gel (F 1500/LS 254, 20 \times 20 cm, TLC Ready Foil, Schleicher & Schuell). Mixtures of ammonium acetate 10%-methanol (50:50 or 90:10) were used as eluent. Radio-chromatography was performed by counting different 5 mm slices of polymer-backed silica gel paper using a high purity germanium (HPGe) detector coupled with a Canberra (model GC1020-7500SL) multichannel analyzer. Calculations were based on the 171 keV peak from 111In. All values were expressed as mean ± standard deviation (Mean ± SD) and the data were compared using student T-test. Statistical significance was defined as $P < 0.05$.

Methods

Electroplating of the natural Cd targets

Cadmium electroplating over a copper surface was performed according to the conditions given in the literature [15]. Briefly, a mixture of $3\text{CdSO}_4 \cdot 8\text{H}_2\text{O}, \text{KCN}, \text{Brij and hydrazine hydrate with a final volume of 450 ml DDH}_2\text{O (pH 13) was used as the electroplating bath for cadmium deposition on a copper backing (constant current: 320 mA, stirring rate 780 rpm, time: 0.5 h). After the deposition of about 500 mg cadmium layer, the targets were wrapped in Parafilm$^\text{TM}$ coatings to avoid atmospheric oxygen exposure. Finally, the target was sent for irradiation.**

Preparation of 111In-InCl$_3$ solution

111In-indium chloride was prepared by 20 MeV proton bombardment of the natural Cd-electroplated copper backing prescribed above with a high purity (>95%) in a 30 MeV cyclotron for 48 min and 80 μAh and an intensity of 100 μA. After dissolution of the irradiated target by conc. HBr, the solution was passed through a cation exchange Dowex 50 \times 8 resin, pre-conditioned by 20 ml of conc. HBr. The resin was then washed by an HBr conc. solution (3 \times 25 ml). In order to remove the unwanted impurities of Cd and Cu, the resin was totally washed with DDH$_2$O (3 \times 25 ml). Indium-111 was eluted with HCl 1 M (25 ml) as 111InCl$_3$ for labeling use. – Radionuclide purity. Gamma spectroscopy of the final sample was carried out by an HPGe detector.

Preparation of fresh cyclic DTPA dianhydride for optimal protein residulation

This compound was prepared according to methods previously given in the literature with slight modifications [3]. Briefly, DTPA in the acidic form (0.1 mole) was heated with a 4-fold molar excess of acetic anhydride (0.4 mole), dissolved in 50 ml of pyridine and heated at 65°C for 24 h. The resulting anhydride was insoluble in pyridine and was collected by filtration, purified by repeated washing with acetic anhydride, and finally with anhydrous ether. Drying in an oven at 50–60°C removed the last traces of solvent. The melting point was 178–180°C. 1H NMR and IR spectra are presented in Figs. 2 and 3.

Conjugation of cyclic DTPA dianhydride with the human immunoglobulin(HIgG)

A solution of HIgG, was prepared (0.2 mg/ml in PBS). A solid portion of cyclic DTPA dianhydride (0.1–0.2 mg) was added to a portion of the HIgG solution (0.4 ml)

Table 1. Cations determined by colorimetric assay in this work [14]

<table>
<thead>
<tr>
<th>Cation</th>
<th>Chelate</th>
<th>USP limit</th>
<th>EP limit</th>
<th>Absorbance</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>dithizone</td>
<td>6</td>
<td>5</td>
<td>yellow</td>
<td>backing</td>
</tr>
<tr>
<td>Iron</td>
<td>di-pyridyl</td>
<td>5</td>
<td>5</td>
<td>pink</td>
<td>valves</td>
</tr>
<tr>
<td>Cadmium</td>
<td>dithizone/DMG</td>
<td>5</td>
<td>8</td>
<td>blue</td>
<td>target</td>
</tr>
</tbody>
</table>

1 United States Pharmacopeiae; 2 European Pharmacopeiae.
and mixed slowly in a shaker at room temperature for 10, 20, 30, 45 and 60 min. Each conjugation mixture was then passed through a Sephadex G-50 column (2 x 10 cm) separately and one-milliliter fractions were collected and checked for the presence of protein using UV absorbance at 280 nm or visible Folin-phenol colorimetric assay. The fractions containing the immunoconjugate were combined. The final concentration of the conjugated antibody was between 0.1–0.15 mg/mL. This fraction was kept at 4°C and was used for radiolabeling step.

Radiolabeling of the antibody conjugate with 111In

The antibody conjugate was labeled using an optimization protocol according to the literature [6]. Typically, the conjugated fraction (35 µg) in 100–300 µl of sodium acetate buffer (0.1 M, pH 7.2) was mixed with 18.5 – 22.2 MBq of 111In-acetate, which was prepared by adding 250 µl of citric acid (0.1 M, pH 1.7) and 100 ml of 0.1 M sodium acetate to 40 µl of InCl3. The resulting solution had a final pH of 5.1 and was incubated at room temperature for 30 min. Following incubation, the radiolabeled antibody conjugates were purified from free 111In by gel filtration on the Sephadex G-50 column (10 ml bed volume) and eluted with PBS. Fractions (0.5 ml) were collected and the radioactivity of each fraction was measured by a recently calibrated radioisotope dose meter (CRC-7, Capintec Instruments, Ramsey, NJ). The protein presence in each fraction was determined using a fast protein assay method by mixing a freshly prepared Folin-Colciteau® reagent and 10 µl of the eluted fractions. The fractions containing the proteins with the maximum radioactivity were combined and tested for purity by ITLC using a radio-TLC scanner. Control labeling experiments were also performed using 111InCl3, in acetate/citric acid, and DTPA with 111InCl3. Both reaction mixtures were passed through separate gel filtration columns and eluted with PBS.

Quality control of 111In-DTPA-polyclonal human immunoglobulin

A 5 µl sample of the final fraction was spotted on a silica gel paper and developed in a mixture of ammonium acetate (10%):methanol (9:1) as the mobile phase, in order to observe the Rf of free In3+ and 111In-DTPA 0.5 and 0.9, respectively, while radiolabeled protein stays at the bottom (Rf = 0.0).

Stability of 111In-immunoconjugate complex in serum

A sample of 111In-conjugate (3.7 x 10^4 – 1.85 x 10^5 Bq) was added to a shaken human serum mixture (450 ml) in a 37°C incubator under a nitrogen atmosphere. A micropipet sample (5 µl) was taken from the shaken mixture every 30 min and spotted on a silica gel paper and developed in a mixture of ammonium acetate (10%):methanol (9:1) as the mobile phase. Free In3+ and 111In-DTPA-immunoconjugate migrated to the Rf of 0.5 and 0.9, respectively.

Biodistribution of 111In-DTPA-HIgG to normal rats

To determine its biodistribution, 111In-DTPA-HIgG was administrated to normal rats. A volume (50–100 µl) of final 111In-DTPA-HIgG solution containing 5.55 x 10^6 ± 1.85 x 10^5 Bq radioactivity was injected intravenously to rats through their tail vein. The animals were sacrificed at exact time intervals (24 and 110 h), and the specific activity of different organs was calculated as percentage of injected dose using a radiometer.

Biodistribution of 111In-DTPA-HIgG to inflammatory-lesion bearing rats

Animal studies and procedures were performed using previous methods for evaluation of inflammation seeking compounds. Turpentine oil (40 µl) was injected SC to the dorsal area of normal rats weighing 150–200 g. After 6–8 days sample animals were separated and kept for the distribution studies. The distribution of 111In-DTPA-HIgG among tissues was determined for untreated rats and for rats with inflammatory lesions. A volume of final 111In-DTPA-HIgG solution (0.1 ml) containing an activity of 4.4 MBq (< 15 mg in 100 µL) was injected to animals via their dorsal tail vein. The total amount of radioactivity injected into each rat was measured by counting the 1-ml syringe before and after injection in a dose calibrator with fixed geometry.

The animals were sacrificed by ether anesthesia at selected times after injection (24 h and 110 h), the tissues (blood, heart, lung, spleen, intestine, foeces, skin, bladder, kidneys, liver, muscle and bone) were weighed and rinsed with normal saline and their specific activities were determined with an HPGe detector equipped with a sample holder device as percent of injected dose per gram of tissues.

Results and discussion

Radiolabeled human polyclonal IgG localizes at focal sites of infection/inflammation. 111In-IgG scintigraphy significantly contributed to the diagnostic process in patients with fever of unknown origin [2] and the detection of focal infection [20]. Indium-111-IgG scintigraphy is a sensitive tool for the detection of infectious bone and joint disease. Recently, 111In-HIgG has been used in clinical studies of antibody distribution and pharmacokinetics [18, 19]. Initially it was hypothesized that HIgG was retained in inflammatory foci due to the interaction with Fc-g receptors as expressed on infiltrating leukocytes [5]. Later studies showed that radiolabeled HIgG accumulates in infectious foci due to nonspecific extravasations due to the locally enhanced vascular permeability as well [4]. Thus, 111InHIgG can be used for sensitive detection of inflammation/infection foci.

There have been many low-dose InHIgG administrations followed by 24 h tissue dose determination studies in the literature. In this study we used a rather high-dose InHIgG administration in animals with a rather long-term data acquisition showing a very good distribution pattern after 110 h.
Production of 111In-indium chloride

Irradiation of the natural electroplated cadmium on a copper backing, produced a large amount of 111In in the form of chloride after elution using 0.05 M HCl. Gamma spectroscopy of the final sample showed a radionuclide purity higher than 97% showing the presence of 171 and 245 keV gamma energies. The chemical purity of the final solution was checked by colorimetric assays for Cd, Cu cations that both were under the permitted limits as shown in Table 1.

Preparation and structure confirmation of DTPA cyclic dianhydride

In order to prepare the bi-functional ligand, DTPA cyclic dianhydride, which was not cost effective, we tried the general procedure for its preparation [6]. The reaction was performed in pyridine containing DTPA acid form and acetic anhydride. The filtered mass was washed with cold acetic anhydride to remove the residues of the reactant. The solid was dried in an oven for a couple of hours and finally re-crystallized to get a high purity product, suitable for spectroscopic and radiolabeling steps (Fig. 1). Washing/drying steps were very important. Repetition of these steps afforded high-purity product with rather long shelf-life. Such samples can be stored at room temperature under a blanket of N$_2$ for up to one year.

DTPA cyclic anhydride was characterized by IR spectroscopy. The formation of 1730 cm$^{-1}$ peak indicated anhydride carbonyl group formation which is accompanied by a weaker 1695 cm$^{-1}$ carboxylic acid peak of the untouched COOH. The IR spectrum of cyclic DTPA-dianhydride is shown in Fig. 2.

1H NMR spectrum of the above compound was recorded in DMSO at 25°C. The chemical shifts of CH$_2$CO groups have the lowest field are very close so that a major singlet is observed around 3.76 ppm (a). The NCH$_2$CH$_2$N groups are more shielded and because of their similarity, a broad multiplet is observed at 2.6–2.56 ppm (b, c). The DMSO peak is observed at 2.5 ppm as a multiplet (d). The 1H NMR spectrum of cyclic DTPA-dianhydride is given in Fig. 3.

Conjugation of the HlgG with DTPA cyclic dianhydride and radiolabeling of HlgG with 111In

The labeling yield of 111In-DTPA-HlgG has been studied in a wide range of antibody/DTPA ratios in order to optimize the process and to improve 111In-DTPA-HlgG performance in vitro (Table 2). The overall radiolabeling efficiency was over 77% and the specific activity was kept in the range of 300–500 MBq/mg. The reagent ratios against radiolabeling efficiency in our experiments are demonstrated in Table 2.

The conjugated HlgG fractions containing the maximum protein content were mixed with 111In-InCl$_3$ solution, vortexed and kept at room temperature. Small fractions were taken from this mixture and tested by RTLC to find the best time scale for labeling. After an hour, the free 111In/conjugated 111In ratio in the labeled sample remained unchanged. The mixture was then passed through another Sephadex G-50 gel filtration column in order to remove trace amounts of unbound 111In cation.

Table 2. Percentage radiolabeling efficiency of antibody conjugate

<table>
<thead>
<tr>
<th>Antibody/DTPA molar ratio</th>
<th>Radiolabeling efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:100</td>
<td>89.0</td>
</tr>
<tr>
<td>1:50</td>
<td>90.3</td>
</tr>
<tr>
<td>1:20</td>
<td>89.3</td>
</tr>
<tr>
<td>1:10</td>
<td>85.8</td>
</tr>
<tr>
<td>1:2</td>
<td>81.1</td>
</tr>
<tr>
<td>1:1</td>
<td>75.6</td>
</tr>
</tbody>
</table>
The eluted fractions were checked by Folin-Colciteau® reagent and for the presence of radioactivity in order to determine the 111In-DTPA-HIgG containing fractions. Figure 4 shows the radioactivity content of the eluted fractions as well as the protein presence. Fraction number 2 was chosen as the suitable final product with appropriate specific activity for animal tests.

In vitro serum stability

Radiolabeled conjugate was examined for stability in mouse serum over a 48 h incubation period at 37°C. Approximately 95% of the activity was present at $R_f = 0$ as was expected for the labeled protein in RTLC (NH$_4$OAc:MeOH; 9:1) and no significant release of free 111In was detected over this time period. This observation provides evidence for similarities in radiolabeling efficiency and serum stability of other reported radiolabeled antibody conjugates [10].

Induction of inflammation in normal rats

Inflammation-bearing rats: turpentine oil (40 µl) was injected SC to the dorsal area of 5 groups of rats weighing 150–175 grams. After 7 days sample animals were ready for biodistribution studies while inflammatory tissues weighed to suitable amounts (0.7 ± 0.05 g) (Fig. 5).

Biodistribution studies

The distribution of [111In]InCl$_3$ and [111In]HIgG among tissues were determined for untreated rats and for rats with inflammatory lesions. A volume (0.1 ml) of the final [111In]HIgG solution containing 4.4–5.2 MBq radioactivity (≤ 6 mg IgG in 100 µL) was injected into the dorsal tail vein. The total amount of radioactivity injected into each mouse was measured by counting the 1-ml syringe before and after injection in a curiemeter with a fixed geometry. The animals were sacrificed by ether asphyxiation at selected times after injection (1 and 4 days), the tissues (blood, heart, spleen, kidneys, liver, intestine, stomach, lung, skin and inflamed tissue) and foeces were weighed and their specific activities were determined with a γ-ray scintillation as a percent of the injected dose per gram of tissues (Figs. 6 and 7).

As can be concluded from Fig. 6, after 24 h the maximum activity is present in the kidney which is possibly due to excretion of 111In after complex dissociation in the liver and a rather nice accumulation of radioimmunoconjugate in the inflamed tissue. Lower accumulations have been observed in the gastrointestinal system due to entero-hepatic excretion. After 110 h, the background radioactivity from the gastrointestinal system has almost disappeared, while most of the radioactivity stays in the inflamed tissues and kidneys. The high kidney activity can be due to an entero-hepatic cycle. Excess of radiolabeled HIgG is trapped...
in liver after couple of hours like any other protein in the mammals and finally is broken down. The free iodine is then excreted via hepatobiliary tract into GI system. In the next step, ^{111}In is re-absorbed through intestine and circulate in blood stream. Finally, it is excreted through urinary tract even after 110 h like any other cation.

From these data, it is understandable that 110 h is a rather suitable time for SPECT studies in vivo due to high target accumulation. On the other hand, at this dosage possible abdominal inflammations cannot be diagnosed due to the high gastrointestinal activity. The conclusion of the latter must be checked by further experiments on other animal models.

Total labeling and formulation of ^{111}In-H IgG took about 60 min, with a yield of 99%. A suitable specific activity product was formed via insertion of ^{111}In in cation. No unlabeled and/or labeled conjugates were observed upon RTLC analysis of the final preparations. The radio-labeled complex was stable in mice serum for at least 24 h and no significant amount of free ^{111}In was observed. Trace amounts of ^{111}In-iodine chloride ($\approx 1\%$) were detected by TLC. The final preparation was administered to normal and turpentine oil-treated rats and biodistribution of the radiopharmaceutical was checked 1 and 4 days later. In contrast to other labeled immunoglobulins, ^{111}In-DTPA-H IgG, is a suitable inflammation detecting radiotracer with a rather long half-life.

References