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Introduction

The maximum entropy method (MEM) stems from the so-
called Bayesian logic [11]. It was used to analyze many
spectroscopic data [2, 3, 7, 9]. However, this method was
not as yet extensively applied to the analysis of Mössbauer
spectra where presence of the distribution of hyperfine field
parameters makes the spectra complicated and their inter-
pretation becomes ambiguous because of the assumptions
one makes in order to get the hyperfine field distributions.

In short, when the Zeeman interaction is dominating,
the Mössbauer spectrum consists of lines measured as
a function of the source velocity V(i), where i = 1,2,…,N
with N being usually 256. In a typical experiment with 57Fe-
based absorption, for a given hyperfine magnetic field B
(in Tesla), isomer shift IS (in mm/s) and quadrupole
splitting QS (in mm/s) the recoilless absorption should
occur at the following six velocities (Zeeman sextet):

v1 = B*(3g3/2 − g1/2)/2 + QS + IS
v2 = B*(g3/2 − g1/2)/2 − QS + IS
v3 = B*(−g3/2 − g1/2)/2 − QS + IS
v4 = B*(g3/2 + g1/2)/2 − QS + IS
v5 = B*(−g3/2 + g1/2)/2 − QS + IS
v6 = B*(−3g3/2 + g1/2)/2 + QS + IS,

where the gyromagnetic factors for 57Fe nucleus are:
g3/2 = −0.067897 mm/s/T, g1/2 = 0.118821 mm/s/T.

In the case of infinitely thin absorber, the line intensities are:
  Line  Unpolarized Circularly polarized
number     radiation         radiation
  1 I1 = 3(1 + c2)/16 I1 = 3(1 + c2 + 2c1)/16
  2 I2 = (1 − c2)/4 I2 = (1 − c2)/4
  3 I3 = (1 + c2)/16 = I1/3 I3 =(1 + c2 − 2c1)/16
  4 I4 = I3 I4 = I1/3
  5 I5 = I2 I5 = I2
  6 I6 = I1 I6 = 3I3
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where

(1) c1 = <cosΘ>,    c2=<cos2Θ>

with Θ being an angle between the direction of a photon
and the direction of magnetization of a sample. The averaging
runs over all possible grains and domains in the sample [14].

A given ith line contributes to the jth channel in the
velocity spectrum, the intensity being proportional to

(2)

where the natural width, Γ, of the line from the Mössbauer
source is 0.22−0.25 mm/s.

In the general case of dominating magnetic interaction,
one deals with the distribution of all five parameters
appearing in the above formulas i.e. B, IS, QS, c1 and c2.
There exist methods of reconstructing the hyperfine mag-
netic field distribution [4−6, 10, 12, 13, 15, 16] from measured
spectra. However, in order to make such reconstruction
one has usually to assume a certain correlation between,
e.g., the hyperfine field B and the isomer shift IS. To the
best knowledge of the authors, there is no code enabling
one to get the distributions of B and IS independently of
each other. Obviously, the situation becomes much more
complex if the distributions of other parameters have to be
taken into account. This paper shows that such task can
be feasible when the analysis is carried out by means of the
maximum entropy method. The first successful attempt to
use this method for a single parameter distribution was
published by Brand and Le Caer [1]. Dou et al. [8] were
using the Bayesian inference theory to obtain the distribu-
tion of one parameter (B) assuming linear coupling of two
other parameters (IS and QS) to B. Their approach,
however, was not the MEM approach in strict sense.

Maximum Entropy Method

Assume that the whole space of parameters (five-dimen-
sional in the most general case) was divided into pixels and
the value ρj denotes the probability of having the values of
these parameters corresponding to this particular pixel.
Because the line intensities are linear in the densities, the
intensities Wi measured at ith velocity channel will be given
by:

(3)

where i = 1,…,N and the transformation matrix {rij} can
easily be evaluated from the expressions given in the
Introduction.

In accordance with the principles of the MEM, one has
to maximize the information entropy:

(4)

under the constraint of minimum of the χ2 misfit function
and proper normalization of the spectra calculated from

the reconstructed distribution ρ. The simplest normal-
ization condition is obtained from requiring that the sum
of measured intensities Wi and the sum of intensities Ti
corresponding to the distribution ρ be equal. The respective
Lagrangian of the problem is

(5)

where:

where σl denotes the uncertainty of the Wl, while α and γ
are the Lagrange multipliers. One can check that in the
ideal case the values bj should be independent of the index
j, so one can set bj = b, and the final equations to solve
have the shape of

(6)

where

There are Npix strongly non-linear eq. (6). To solve such
a number of equations is a real problem. However, because
the Mössbauer spectra are measured usually in 256
channels only, instead of solving Npix equations one can
solve N = 256 equations with respect to the “theoretical”
intensities Tj:

(7)

Substituting eqs. (6) and (7) one can see that one gets the
required equations with respect to the set of {Tj}. This set
can be solved by the Newton-Raphson method.

In the practical case, we encounter the problem of finding
an optimum parameter α. The parameter γ is obtained, if
necessary, by a strict requirement of the spectrum normal-
ization. The search for optimum α parameter is a tedious
task, but our experience shows that once good χ2 is obtained,
the change in the optimum α value results in rather insigni-
ficant changes in the reconstructed distributions.

Results

Three cases were considered.
(1)  the distribution of hyperfine magnetic fields consisting

of three Gaussian distributions,
(2) the simultaneous Gaussian distributions of the field B

and the isomer shift IS,
(3) the case (1) with added Gaussian distributions of IS,

non-correlated with the values of the magnetic field B.
For each simulated distributions, the Mössbauer

spectrum was calculated and the noise corresponding to
the assumed Poisson statistics was added to the simulated
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spectrum. Next, by means of the MEM with ignorant prior
(ρj

0 = const) the distribution {ρj} was reconstructed. The
parameter α was chosen so as to obtain χ2 close to 1.
The results are presented in Figs. 1−3.

In the first case, the reconstruction is almost perfect.
There are some artifacts on the low-field side which show
the tendency of splitting of the peak at the lowest field.
This shows that one has to be careful with jumping to con-
clusions about such splitting. Happily, it is easy to make
a check and see whether this kind of effect does not arise
from the statistics or from the calculation method itself.

Fig. 1c. Reconstructed distribution of the hyperfine magnetic fields
(dots) compared with the simulated original distribution (thick
line).

Fig. 1a. Simulated distribution of hyperfine magnetic fields.

Fig. 1b. Spectrum obtained for the distribution shown in Fig. 1a.
The solid line shows reconstructed spectrum.

Fig. 2a. Simulated distribution of hyperfine parameters B and IS.

Fig. 2c. Reconstructed distribution in (B,IS)-plane. Note that the
range of IS is broader than in Fig. 2a.

Fig. 2b. Simulated and reconstructed spectra for the distribution
shown in Fig. 2a.
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There is no doubt that the field distribution with a single
peak in two-dimensional space B−IS is very well recon-
structed (Fig. 2) without any necessity of assuming, e.g.,
a linear relationship between the two parameters of
interest. In the most difficult case studied in this paper,
Fig. 3, it is seen that the positions of the peaks are well repro-
duced. However, the peaks with lower intensities are
reproduced with decreasing accuracy: the lower the field,
the broader the distribution, so the peak intensity becomes
much lower than the originally simulated one. This is not
strange in light that MEM is showing the distributions
as close to the prior as possible, and the prior was taken
homogeneous in all the space. When the statistics in the
measured spectrum increases, the reconstruction becomes
also better. This is shown in Fig. 3d, which displays the
reconstruction from the spectrum with statistics 10 times
better than shown in Fig. 3b.

Conclusions

We have checked the feasibility of the maximum entropy
method in reconstruction of the hyperfine distribution of
field parameters in the Mössbauer spectra. The results turn
out to be very promising. The reconstructions made were
of high quality, even if the reconstructed and simulated dis-
tributions were not identical. We believe that this kind of

reconstruction can become an excellent starting point to the
interpretation of the measured spectra in physical terms.
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