Mössbauer effect studies of Dy(Fe_{0.7-x}Ni_xCo_{0.3})₂ intermetallics

Agata Jabłońska, Jan Suwalski, Jarosław Pszczoła, Piotr Guzdek, Paweł Stoch, Antoni Pańta

Abstract A consequence of the Fe/Ni substitution in the series of $Dy(Fe_{0.7-x}Ni_xCo_{0.3})_2$ was studied in the presented paper. The synthesis and X-ray analysis (300 K) of the $Dy(Fe_{0.7-x}Ni_xCo_{0.3})_2$ system were performed. The cubic, $MgCu_2$ -type, *Fd3m* crystal structure was evidenced for this solid solution. ⁵⁷Fe Mössbauer effect measurements for the system were carried out at 77 K. The obtained crystallographic lattice parameters and the hyperfine interaction data are presented. The magnetic hyperfine field values form a separate branch of the Slater-Pauling curve situated above the branch corresponding to the $Dy(Fe_{1-x}Co_x)_2$ intermetallics.

Key words intermetallics • crystal structure • ⁵⁷Fe Mössbauer effect • hyperfine interactions • Slater-Pauling curve • band structure

Introduction

⁵⁷Fe magnetic hyperfine fields $\mu_0 H_{hf}(\mu_0 \text{ is the magnetic per$ $meability}), studied in the Dy(Mn_{1-x}Fe_x)_2 and Dy(Fe_{1-x}Co_x)_2 intermetallics, treated as a function of the average number$ *n*of 3d electrons per transition metal site, behave according to the Slater-Pauling type dependence [1].

Both the 3*d* subbands are filled-up across the $Dy(Mn_{1-x}Fe_x)_2$ series and the field μ_0H_{hf} increases, but a completeness of the subbands is not reached. This tendency is continued across the $Dy(Fe_{1-x}Co_x)_2$ series and the majority of 3*d* subband is completed for the $Dy(Fe_{0.7}Co_{0.3})_2$ composition, the μ_0H_{hf} field approaches its maximum. Further Fe/Co substitution populates only the minority 3*d* subband and reduces the μ_0H_{hf} field. It was interesting to study the outcome of the Fe/Ni substitution in the $Dy(Fe_{0.7}Co_{0.3})_2$ compound (the Fe/Ni substitution introduces additional 3*d* electrons). For this purpose, the intermetallics $Dy(Fe_{0.7}-xNi_xCo_{0.3})_2$ were synthesized and X-ray and ⁵⁷Fe Mössbauer effect studies were performed. Results are discussed within the frame of the rigid band model [3].

Experiment and results

The intermetallics Dy(Fe_{0.7-x}Ni_xCo_{0.3})₂ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) were prepared by arc melting. The cubic, *Fd3m*, MgCu₂-type (C15) Laves phase for the compounds was observed. The lattice parameters a(x) are presented in Table 1.

The Mössbauer effect measurements were performed at 77 K and the spectra are presented in Fig. 1. The fitting procedure was analogous to a one described elsewhere [2].

A. Jabłońska, J. Suwalski Institute of Atomic Energy, 05-400 Otwock-Świerk, Poland

J. Pszczoła[⊠], P. Guzdek, P. Stoch Solid State Physics Department, AGH University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12/ 617 29 90, Fax: +48 12/ 634 12 47, e-mail: pszczola@uci.agh.edu.pl

A. Pańta

Department of Metallurgy and Materials Engineering, AGH University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland

Received: 30 June 2004, Accepted: 10 August 2004

x	<i>a</i> [Å]	п	$\mu_0 H_{\rm hf}$ [T]	IS [mm/s]	QS [mm/s]
			295 K		
0.1	7.299(3)	6.5	21.38(12)	-0.116(16)	0.044(18)
0.2	7.287(3)	6.7	19.80(15)	-0.140(19)	0.061(23)
0.3	7.271(3)	6.9	16.71(9)	-0.116(14)	0.029(16)
0.4	7.241(3)	7.1	12.21(6)	-0.074(9)	0.118(9)
0.5	7.216(3)	7.3	-	-0.025(15)	0.311(28)
0.6	7.194(3)	7.5	_	-0.089(22)	0.252(224)
			77 K		
0.1	_	6.5	23.95(12)	0.024(17)	0.038(18)
0.2	-	6.7	23.12(9)	-0.082(25)	0.052(27)
0.3	-	6.9	21.80(6)	0.020(8)	0.048(10)
0.4	-	7.1	20.29(6)	0.019(8)	0.048(10)
0.5	-	7.3	18.42(7)	0.023(11)	0.058(12)
0.6	-	7.5	14.77(22)	0.019(23)	0.072(34)

Table 1. The crystal lattice parameters (295 K) and the average hyperfine interaction parameters (295 and 77 K) for Dy(Fe_{0.7-x}Ni_xCo_{0.3})₂: n – average number of 3d electrons, IS – isomer shift, $\mu_0 H_{hf}$ – magnetic hyperfine field and QS – quadrupole interaction parameter.

The average values of the hyperfine interaction parameters, i.e., the isomer shift IS (with respect to pure iron metal at 300 K), the magnetic hyperfine field $\mu_0 H_{\rm hf}$ and the quadrupole interaction parameter QS determined for

the Dy(Fe_{0.7-x}Ni_xCo_{0.3})₂ series are presented in Fig. 2. Additionally, the parameters are listed in Table 1. The average parameters are described by the numerical formulas: IS(x) = [0.021(8)x + 0.002(30)]mm/s, $\mu_0 H_{hf}(x) = [-23.91(4.05)x^2$

Fig. 1. ⁵⁷Fe Mössbauer effect transmission spectra of the $Dy(Fe_{0.7-x}Ni_xCo_{0.3})_2$ intermetallics (77 K). Experimental points and fitted lines are presented.

Fig. 2. Average hyperfine interaction parameters of the Dy(Fe_{0.7-x}Ni_xCo_{0.3})₂ series (77 K): 1 – the isomer shift IS in relation to Fe-metal, 300 K; 2 – the magnetic hyperfine field $\mu_0 H_{hf}$; 3 – the quadrupole interaction parameter QS.

-1.24(2.53)x + 24.48(0.32)]T and QS(x) = [0.047(10)x + 0.037(4)]mm/s.

The Slater-Pauling curve

The Slater-Pauling curve $\mu_0 H_{\rm hf}(n)$, obtained previously for the series $Dy(Mn_{1-x}Fe_x)_2$ and $Dy(Fe_{1-x}Co_x)_2$ [1], is presented in Fig. 3 (line 1) for a comparison with the branch $\mu_0 H_{\rm hf}(n)$ obtained for the $Dy(Fe_{0.7-x}Ni_xCo_{0.3})_2$ series (Fig. 3, line 2). In this case, the average number of 3d electrons calculated per one site of the transition metal sublattice can be expressed as $n(x) = (0.7 - x)^{*}6 + 8x + 0.3^{*}7$, where 6, 8 and 7 are numbers of 3d electrons of Fe, Ni and Co atoms, respectively. The Fe/Ni substitution creates the $\mu_0 H_{\rm bf}(n)$ branch which bifurcates from the top area of the Slater-Pauling dependence. The experimental points are described by lines: $1 - \mu_0 H_{\rm hf}(n) = [12.0(1.1)n - 49.4(6.5)]T, 1 - \mu_0 H_{\rm hf}(n)$ = [-13.2(2.4)n + 108.0(16.5)]T. The field of this new branch falls down nonlinearly with increasing n. Line 2 is fitted using the formula $\mu_0 \dot{H}_{hf}(n) = [-3.5(1.0)n^2 + 40.7(27.0)n - 10.5(1.0)n^2 + 40.7(27.0)n^2 + 40.7(27.0)$ 92.9(10.1)]T.

Fig. 3. Magnetic hyperfine fields $\mu_0 H_{hf}(n)$ (77 K) compared for series: $1 - Dy(Mn_{1-x}Fe_x)_2$, $Dy(Fe_{1-x}Co_x)_2$ and $2 - Dy(Fe_{0.7-x}Ni_xCo_{0.3})_2$.

Summary and discussion

The band structure of the $Dy(Fe_{0.7-x}Ni_xCo_{0.3})_2$ series is unknown as yet. Nevertheless, it has been found that the majority of 3d-subband of the starting compound $Dy(Fe_{0.7}Co_{0.3})_2$ of the $Dy(Fe_{0.7-r}Ni_rCo_{0.3})_2$ series is completed with 3d electrons and the magnetic hyperfine field $\mu_0 H_{\rm hf}$ approaches its maximal value [1]. In the $Dy(Fe_{0.7-x}Ni_xCo_{0.3})_2$ series, the Fe/Ni substitution was used to introduce additional 3d electrons into the transition metal sublattice and thus to enforce changes in the 3d band. As a result, the determined $\mu_0 H_{\rm hf}(n)$ dependence for the $Dy(Fe_{0.7-x}Ni_xCo_{0.3})_2$ series (Fig. 3, curve 2) is situated above the $\mu_0 H_{\rm hf}(n)$ dependence corresponding for the rest (*x* > 0.3) of the Dy(Fe_{1-x}Co_x)₂ series. It seems that the Fe/Ni substitution should change the Fermi energy, the position of the 3d bands in relation to the Fermi level, the width of 3d bands and the energy shift between 3d subbands [3]. In consequence of these changes, it is expected that the 3delectrons are gradually and adequately redistributed over the 3*d* subbands giving the observed $\mu_0 H_{\rm hf}(n)$ dependence.

Since the 3d band properties are unknown as yet, at present a more detailed discussion is impossible. For a more

precise discussion, the knowledge of band structure of the Fe/Ni-substituted intermetallic series is necessary.

Acknowledgment Supported partially by the State Committee for Scientific Research, grant No. 3T08D04827. M. Mróz and T. Winek are acknowledged for technical assistance.

References

- Gicala B, Pszczoła J, Kucharski Z, Suwalski J (1995) Magnetic hyperfine fields of Dy_x(Fe-Co)_y compounds. Solid State Commun 96:511–515
- Stoch P, Pszczoła J, Jagodziński P *et al.* (2004) Synthesis, crystal structure and Mössbauer effect studies of Dy(Mn_{0.4} Fe_{0.6-x}Al_x)₂ intermetallics. J Alloys Compd 375:24–30
- 3. Vonsovskij W (1971) Magnetizm. Nauka, Moscow (in Russian)