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In this workshop, we have seen remarkable evidence of
the rapid progress of two-pion and two-kaon correlations
with regards to determining the space-time characteristics
of emitting sources in collisions from RHIC. These correla-
tions are driven by the identical-particle interference of
two bosons [10]. Over the last twenty years, the measure-
ments and associated phenomenology have increased in
their sophistication to the point where all six dimensions
of the correlations are currently being exploited as can be
seen in [17].

The results from two-pion correlations at RHIC [1, 2,
4] have shattered expectations [8, 21, 24, 25] of long-lived
sources which should have resulted from the softening of
the equation of state accompanying the deconfinement
transition. Hydrodynamic calculations that incorporate
lattice-gauge inspired equations of state and breakup
criteria consistent with expected hadronic cross sections
predict sources which stay together for times of 15–20 fm/c
with continuous emission during the transverse expansion.
Instead, two-pion correlations [17, 18] are consistent with
sources which disassociate at ~10 fm/c in a sudden flash
[6, 17]. Even more remarkably, the transverse size of the
system appears to be near 13 fm, which would require an
extremely rapid acceleration of the system which begins
life with a transverse radius of ~6 fm. Although surface
velocities indeed appear to be of the order of 0.7 c in blast-
wave fits to spectra, that velocity must be attained in a very
short time for the matter to reach 13 fm in 10 fm/c. Cascade
calculations [11, 16], which do not include a softening to
the equation of state, can fit the overall source size but
under-predict the transverse dimension of the emitting
source.

Without going into detail, the correlation function is
principally determined by the particle separation distribu-
tion,
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(1)

Here, Sa provides the probability of emitting a particle of
velocity ν at space-time coordinate xa, and g(ν,r) gives the
chance that two particles of the same velocity are separated
by r on their asymptotic trajectories. Since the measured
correlation function, C(q,r), is itself a six-dimensional
function, one can only extract three dimensions of space-
time information about the source for any velocity ν. Thus,
time has to be extracted by assuming a symmetry between
the spatial characteristics in the two transverse directions.
The dimension of the g(ν,r) in the outwards (parallel to ν)
direction is then stretched if the source is long-lived, i.e.,

(2)

where R⊥  is the transverse spatial size of the source. Thus,
the comparison of Rout to Rside provides information
regarding the length of time over which emission occurs.
In addition to the outwards and sidewards dimensions, the
longitudinal dimension, Rlong, also provides information
about the temporal characteristics of the emission. The
asymptotic probability cloud describing particles moving
asymptotically with zero rapidity is confined to a fraction
of the overall longitudinal extent of the source since high-
rapidity sources are unlikely to emit particles with zero
rapidity. If the distribution of sources are uniformly spread
through all rapidity, and if the position of sources are
described by a Bjorken (no longitudinal acceleration)
expansion, z = νsourcet, the size of the probability cloud is
determined by the velocity gradient,

(3)

Here, τ is the mean time at which breakup occurs. For
transverse masses much larger than the temperature, Mt
==√M2 + pt

2 >> T, the thermal velocity of the longitudinal
motion is determined by the simple form [3, 19, 21],

(4)

This is often referred to as Mt scaling. After estimating the
breakup temperatures from RHIC with other means, one
can use the measurement of Rlong to determine the mean
emission time. This well complements the comparison of Rout
to Rside which provides insight into the variance of emission
times.

Thus, a measure of g(ν,r) can be used to determine
both spatial and temporal information about the source.
The ability to extract g(ν,r) from correlation measurements
hinges on the ability to invert the expression,

(5)

where ψ(q,r) is the relative wave function of two particles
with asymptotic relative momentum q, and ν is the velocity
of the two-particle center of mass, which will always be
assumed to be zero by a fortuitous choice of reference frame.
For identical spinless bosons, the relative wave function is
particularly simple to invert, |ψ(q,r)|2 = 1 + cos 2q⋅r. One

can then perform a Fourier transform and retrieve g(ν,r).
It has become standard procedure for experimentalists to
divide π+π+ and π−π− correlation functions by a Coulomb
correction factor so that the resulting object can be treated
as if the pions were never charged and g can be found by
a Fourier transform.

Once the inversion has been identified as a Fourier
transform it is especially easy to relate g(r) and C(q) for
Gaussian shapes.

(6) if

where q is the momentum of one particle in the pair frame.
Unfortunately, it is not so simple to relate g(r) to C(q)

for pairs where the interaction is more complicated. Even
the simple Coulomb interaction leads to an opaque form
for the wave function to be inserted into Eq. (5). Figure 1
shows correlation functions for the pK+ interaction calculated
with Coulomb interactions assuming a Gaussian source of
Rout = 8 fm, Rside = Rlong = 4 fm. Results are also displayed
for the corresponding classical expression [13] where,

(7)

where θqr is the angle between q and r. The classical
and quantum results agree well when qR >> 1, or for q >
50 MeV/c in heavy ion collisions. As the classical expression
is more physically transparent, one can gain a clearer insight
into the sensitivity of the correlation function to the size
and shape from the classical expression. First, if one

Fig. 1. pK+ correlations are shown for a Gaussian source (Rlong =
Rside = 4 fm, Rout = 8 fm). The classical approximation well explains
Coulomb correlations at large relative momentum. The strong
interaction only moderately affects the correlation function.
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averages over all directions of q, one can see that the
classical description has a simple form at large q,

(8)

where η == µe2/q with µ referring to the reduced mass. Thus,
the correlation behaves as (µe2/q2)<1/4> for large q.

The sensitivity of the correlation function to the shape
can be seen by plotting the correlation as a function of the
direction of q relative to the outwards axis. This is shown
in Fig. 2. Again, the classical and quantum results agree
well for larger relative momentum. At small relative
momentum, the quantum calculation shows little sensitivity
to the direction. At large relative momentum, the shape
continues to scale as 1/q2 which allows one to use large
bins in q. Since the interaction is repulsive it is not surprising
that the correlation stays negative for all directions of q.
However, one might be surprised at the strong sensitivity
to the direction. Careful consideration of Eq. (7) shows
that the classical correlation falls deeper in the cosθ = ±1
direction than the cosθ = 0 direction by a factor of R2

out/
R2

side. Since the origins of the particles are more likely to be
in direction cosθr = ±1, the particles traveling directly
toward the deflecting charge will be directed away from
the cosθ = ±1 directions by the repulsive Coulomb force.

Strong interactions also distort wave functions and thus
potentially provide the means to extract size and shape
information. For distances beyond the scale of the strong
interaction, the wave functions are determined by phase
shifts.

(9)

However, inside the range of the strong interaction the
wave function ψ is varied in ways that depend on the exact
form of the potential. In fact, since the wave function is
only a sensible object for two well defined particles, it
is not even a physical object for small distances when
scattering proceeds through a resonance. Fortunately, the
form of the wave function is not important for distances
much less than characteristic scales of the source. Only the
integral integral of |ψ(q,r)|2 matters for the range, r < ε,
and one can safely assume that the alteration of the wave
function is described by an effective constant.

(10) |ψ(q,r < ε)|2 = |ψ0(q,r)|2 + W(ε,q)

where ψ0 is the Coulomb wave and W is independent of r.
Fortunately, the integral of |ψ|2 is related to the density
of states and can be expressed in terms of the deriva-
tives of the phase shifts [12].

(11)

Thus, W can be expressed in terms of derivatives of the
phase shifts and integrals of the wave function over a range
in which the wave function is known. Since these integrals
can be performed analytically, W can be expressed in closed
form [22].

Examples of the effects of the strong interaction are
shown in Figs. 1 and 2 for pK+correlations and for pπ+

correlations in Fig. 3. The strong interaction has little effect
on pK+correlations since phase shifts vary little. Not
surprisingly, the strong interaction provides a noticeable
correlation for pπ+ pairs with the relative momentum
chosen to be near the peak of the ∆ resonance. The angular
correlations for the Rout = 8 fm, Rside = Rlong = 4 fm pπ+

source shown in Fig. 3 are positive for cosθ near zero and
become negative near cosθ = ±1. The angular sensitivity
has two sources.

Fig. 2. pK+ correlations are shown as a function of the angle of
the relative momentum relative to the outwards direction for the
Gaussian source (Rlong = Rside = 4 fm, Rout = 8 fm). The classical
approximation becomes reasonable for large Qinv where the ratio
of the suppression at cosθ = 1 to the suppression at cosθ = 0
approaches (Rout/Rside)
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Squaring the second term in Eq. (9) provides a contribu-
tion proportional to the square of the scattering amplitude,
|f(Ω)|2. This contribution has the same angular behavior
as a scattered plane wave. For the pπ example, this would
have led to maxima for cosθ ~ ±1 rather than the minima
which are seen in Fig. 3. The second source of angular
dependence stems from the interference between the initial
plane wave and the partial wave corrections. This inter-
ference will be strongest in the direction cosθqr = −1 since
the phases then share the same r dependence, e−iqr. The
source points in this direction are those from which the
trajectories must pass directly over the origin. For cosθqr =
−1, the wave function can be written as

(12)

and one can see that the interference between the scattered
and plane wave is strong in this direction. This diffractive
behavior provides the leverage for extracting shape infor-
mation from the correlation function.

Finally, I wish to make a connection of the analysis here
to the Lednický analysis [7, 14, 15, 23, 27] which compares
correlations for cosθ > 0 to those for cosθ < 0 for non-
identical particles. The Lednický analysis is sensitive to the
dipole moment of the distribution, i.e., the offset of one
particle distribution to that of another type of particle with
the same velocity. By analyzing the correlation as a function
of cosθ, as is shown here, one can gain insight into the
higher moments. For instance, the five quadrupole terms
represented by Yl=2,m, along with the monopole moment
represent the typical variables used to describe an elliptic
anisotropy. Geometrically, these six variables correspond to
the three axes of the ellipse along with the three Euler

angles that describe the orientation of the ellipse. In terms
of Gaussian parameters, these six variables would translate
into the three Gaussian radii and the three cross terms [9].
These are precisely the terms that provide insight into the
space-time nature of the source. In principal, much more
information is available, and one could consider using these
correlations to image the source and provide higher angular
moments as well as a more precise radial (non-Gaussian)
form [5, 20, 26]. Given the importance of HBT measure-
ments from identical-pion and identical-kaon correlations,
the experimental community should give the highest
priority toward investigating the complementary informa-
tion provided by non-identical correlations regarding source
size, shape and lifetime.

This work was supported by the U.S. Department of Energy,
Grant No DE-FG02-03ER41259.
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