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Modeling Bose-Einstein correlations
in heavy ion collisions at RHIC

Michal Bystersky

Abstract Using UrQMD generated Au-Au collisions, two different methods of introducing Bose-Einstein (BE) correlations
among final state particles are applied. New algorithm, which reassigns charges of produced particles but does not alter the
original four-momenta, provided by an event generator, is compared to the standard weighting method. Correlation functions
C,in g;,, and Bertsch-Pratt parametrizations are studied. While longitudinal radii are the same in both approaches, the transverse
and invariant radii as well as the correlation strength A are substantially overestimated in charge reassigning approach.
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Introduction

Space-time evolution of the heavy ion collisions is usually
simulated using microscopic transport models. These
models are based on classical Monte Carlo simulations and,
therefore, are unable to simulate Bose-Einstein (BE)
correlation among produced particles which are of quantum
statistical origin. Such correlations can be modeled by
different techniques [7] on the level of the so-called after-
burners. Most of them introduce two-boson correlations
starting from single-particle phase-space distributions,
altering thus the original distribution of four-momenta
provided by the event generator.

Recently, a new algorithm has been suggested [6], which
claims to overcome this limitation. In this approach, the
BE correlations are introduced via reassigning charges of
produced particles in such a way as to make them look like
particles satisfying Bose statistics. In this contribution, we
compare these two approaches using UrQMD [1] transport
model. The model provides four-coordinates and four-
momenta.

Modeling BE correlations

The two-particle momentum correlation function of
identical particles is defined [7] as a normalized ratio
of corresponding two- and single-particle distributions
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where g = p, - p;, k = 2(p; + p;) and normalization factor
y guarantees that C,(w) = 1.

Usually, a functional dependence of C, on relative
momentum q is described by the Gaussian parametrization.
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Most simple is the g,,, parametrization
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where ¢;,, = —¢” and A is the correlation strength. The par-
ameter R,,, characterizes the width of the source distribution.

More general description of C,(¢,k ) is based on the
so-called Bertsch-Pratt parametrization [2, 4, 5] which uses
decomposition of the four-vector g into the out-side-longi-

tudinal coordinate system

CZ(CiJg) =1+ )\(E)exp(_th'nquz'nv)
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wherek, = Ya(p',; +p,j)andq,=p ,;—p,;are the transverse
pair momentum and transverse relative momentum,
respectively. The correlation function then takes the form
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The standard method of introducing BE correlations
among particles generated via classical Monte Carlo
simulations is the weighting method with two-boson weight

5) w; =1+ cos((p; —pj) Ox; —xj)).

The method computes C, using particle momenta and
coordinates at the freeze-out. A drawback of this method
is that it cannot simulate multi-boson correlations.
However, our use of the weighting method is well justified,
because the phase-space densities generated by transport
models are rather low.

Recently, a new algorithm has been suggested [6], which
claims to overcome this limitation. The algorithm is based
on reassigning charges of produced pions and results in
formation of quantum BE cells in phase-space, in which the
number of identical bosons is enhanced [6]. It conserves
the energy-momenta and does not alter any single particle
inclusive distribution.

Very briefly, the algorithm consists of the following two
steps. Firstly, pion (i) is chosen randomly and +, — or 0
charge is assigned to it randomly with weights proportional

Y 1.001+ 0.0004925
2.4 A 1.398 + 0.03853
Rinv [fm)] 9.54 + 0.1223
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toP, =n,/n,P_=n_nand P, = ny/n,wheren =n,_ + n_
+ nyis the total number of pions 1", 70 and 1 in event.
This pion defines a new phase-space cell. Secondly, the
additional pions (j) are added to the cell with weight [6]

(6) Pij = exp(—2 (x; _xj)z(pi _Pj)z)-

All accepted pions in the cell are assigned to the same
charge as pion (i). The process of adding the pions to the
cell continues until first failure, i.e. when the generated
random number r 0(0,1) becomes greater than P;.

The algorithm of producing new cells proceeds until all
pions in event are used, event by event. In this way, four-
momenta, freeze-out coordinates and total charge of the
system provided by the event generator are kept intact,
but the individual charges of particles are not.

Event simulation

The UrQMD [1] transport model was chosen to simulate
central Au-Au collisions at CMS energy per nucleon pair
Vsyy = 200 GeV with maximum impact parameter b, =
3 fm. The maximum CMS evolution time was set to ¢,
= 500 fm/c. Using a PC equipped with 2.4 GHz Pentium IV
processor 4000 events were generated. The CPU time to
generate one central Au-Au event was about 300 s.

The output from the UrQMD model containing final
particles is an ASCII file compliant with OSCAR 1997A
format. Particle entries of the event-body contain the
particle listing number, ID, four-momentum vector
(PvPyP»E), mass m and freeze-out four-coordinates of the
particle (x,y,z,t). In order to facilitate further processing,
a small code was written to convert the output OSCAR-
file into the ROOT-file with particle entries stored as a set
of TParticle objects [3].

Using the BE correlated UrQMD events obtained from
both methods (5) and (6), the correlation function (1) is
constructed by taking the ratio, bin by bin, of normalized
histogram of real pairs with normalized histogram of mixed
pairs. The real pairs are pion pairs that belong to the same
event and mixed pairs are pions that are picked up randomly
from different events. The following cuts are used. Pions
with pseudo-rapidity |n| < 1 and like-charged pion pairs

Y 1.001x 0.000499
18 A 0.6038 + 0.02293
- ‘1?‘0 Riny [fm] 7.066 + 0.1369
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Fig. 1. The g,,, parametrization (2) of the correlation function for TTTC pairs using charge reassigning algorithm (left panel) and the

weighting method (right panel) with the Gaussian fit.
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Fig. 2. The |q,u|, G4 and |q,,,| projections of Bertsch-Pratt parametrization of the 3D correlation function (4) for 7T pairs. The
correlations modeled by charge reassigning algorithm (black symbols) are compared to the weighting method (open symbols).

in the k,~Y;;bin with transverse pair momentum 0.1 <k, <
0.2 GeV/c and pair rapidity |Y;| < 0.2 are selected. The
UrQMD model provides all pion pairs with -Q* = (p; -
p;)* = (AE)* = (&p))* < 0 and in order to keep the value of
weight (6) below unity, only the pion pairs with space-like
variable —-R* = (x; - x;)* = (Af)’ - (Ax)* < 0 are accepted.
Moreover, additional cut R < 50 fm is used.

Results and conclusions

The g;,, parametrization (2) of the correlation function for
TUTC pairs is plotted in Fig. 1. On the left panel, the Gaussian
fit gives R;,, = 9.54 = 0.12 fm and A = 1.40 % 0.04. The
correlation function obtained as a result of the weighting
method (5) is shown on the right panel for a comparison,
R, = 7.07 £ 0.14 fm, A = 0.60 = 0.02.

Figure 2 shows |q,,,|, @4 and | gy, | projections of the
3D correlation function (4). The 3D correlation histogram
is projected with 0 < |qou |, Gser | Giong| < 0.03 GeV/e cut
applied to each unprojected variable. Neglecting the small
parameter R, the five-parameter fit of the correlation
function yields the following radii of the modeled source,
R, =6.53 £ 0.15 fm, R;;, = 9.13 + 0.20 fm, R;,,,, = 9.35 =
0.19 fm and A = 1.44 * 0.04. The weighting method yields
R, =4.82 +0.16 fm, R;;;, = 4.90 + 0.14 fm, R;,,,, = 9.16 =
0.29 fm and A = 0.66 = 0.03.

To summarize, applying the charge reassigning algorithm
described in the previous section on the UrQMD generated
Au-Au collisions results in the two-pion momentum
correlations shown in Figs. 1 and 2. While the transverse
radii R,,, and R, and also R,,, are substantially overesti-

mated in the charge reassigning method, the longitudinal
dynamics described by R, is the same for both methods.
Moreover, the correlation strength A for the charge
reassigning method acquires the unphysical value (A >1).
Therefore, the algorithm [6] fails to reproduce the BE
correlations. This may be due to the too gradual decrease
of the weight (6), therefore we plan to use different weight
(6) in the future.
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