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In high energy nuclear and particle physics, the space-time
structure of particle emitting sources is often investigated
with the help of the two-particle Bose-Einstein correlation
functions. In heavy ion physics, these correlations are
frequently called as HBT correlations to honor the astro-
nomers R. Hanbury Brown and R. Q. Twiss, who invented
a similar method [7] in radio astronomy to measure the
angular diameter of main sequence stars.

The two-particle correlation function C2(k1,k2) is
defined as

(1)

where ki is the momentum of particle i = 1,2, and N1(k1) is
the single particle invariant momentum distribution (IMD),
while N2(k1,k2) is the two-particle invariant momentum
distribution.

In this manuscript we highlight some of the results of
Ref. [3], where we have investigated in great detail the Bose-
Einstein or HBT correlation functions under the following
three experimental conditions: i) the correlation function
tends to a constant for large values of the relative momentum
q = k1 − k2; ii) near |q| = 0, the correlation function deviates
from its asymptotic, large |q| value in a certain domain of
its argument; iii) the two-particle correlation function is
related to a Fourier transformed space-time distribution
of the source.

Condition iii) is satisfied if the propagation of identical
boson pairs from a chaotic (thermalized) source to the
detector can be described by a plane wave approximation;
this is possible if Coulomb and strong final state interactions
as well as additional short range correlations e.g. caused
by resonance decays can be corrected for or are negligible.
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For clarity, let us consider first a one-dimensional,
factorized toy model. Let x and k stand for the coordinate
and momentum variables, respectively. The model is
defined by the emission function

(2) S(x,k) = f(x) g(k)

and the normalizations are

(3)

where <n> stands for the mean multiplicity. The single-
particle spectrum is

(4)

If iii) is valid, the Bose-Einstein symmetrized two-particle
wave-function is

(5)

In the Yano-Koonin formalism [12], the two-particle
momentum distribution of chaotic sources is given as

(6)

Let us introduce as auxiliary quantities the Fourier
transformed source density distribution and the relative
momentum as

(7)

The two-particle Bose-Einstein correlation function is
obtained as

(8)

that measures the absolute value squared Fourier trans-
formed coordinate-space distribution function of the par-
ticle emitting source.

In physics, as well as in the theory of probability, the
probability distribution of a sum of a large number of
random variables is one of the important problems, and
such distributions are frequently realized in Nature. Limit
distributions characterize the probability distributions of
random processes in the limiting case when the number
of elementary independent random subprocesses tends to
infinity. In case of high energy nuclear and particle physics,
for example, the position of emission of an observable
particle is obtained as a sum of a large number of position
shifts due to various parton-parton scatterings, hadron-
ization, rescattering of hadrons, and decay of hadronic
resonances:

(9)

Hence the distribution of the sum is obtained as a n-fold
convolution,

(10)  f(x) =∫dx1...dxnf1(x1)...fn(xn)δ(x − x1 − x2...− xn).

Various forms of the Central Limit Theorem state, that
under some conditions, the distribution of the sum of large
number of random variables converges to a limit distribu-
tion. In case of normal elementary processes, the limit
distribution of their sum is the Gaussian distribution. This
is one of the frequently encountered cases of limit distribu-
tions.

Stable distributions are precisely those limit distribu-
tions that can occur in Generalized Central Limit theorems.
Their study was begun by the mathematician P. Lévy in
the 1920’s. A recent book by Zolotarev and Uchaikin [10]
contains over 200 pages of applications of stable distribu-
tions in probabilistic models, correlated systems and fractals,
anomalous diffusion and chaos, physics, radiophysics,
astrophysics, stochastic algorithms, financial applications,
biology and geology. Stable distributions provide solutions
to certain ordinary and fractional differential equations.
The breadth of their applications suggests that they can be
considered as a new class of special functions [9, 10, 13].

The Fourier transformed density distribution is usually
called the characteristic function in mathematical statistics.
The stable distributions are frequently given in terms of
their characteristic functions. The reason for this is that
the Fourier transform of a convolution is a product of the
Fourier-transforms,

(11)

and limit distributions appear when the convolution of one
additional elementary process does not change the shape of
the limit distribution, but it results only in a modification
of the parameters of the limit distribution. Hence, the stable
distributions have simple characteristic functions. However,
the explicit formulas describing the Lévy stable source density
distributions are known only in some special cases. As of
now, this is not an essential limitation as public domain
numerical packages exist that can be utilized to calculate
these source densities for any set of parameters [8].

Results of mathematical statistics yield a simple form
for the characteristic function of univariate and symmetric
stable distributions,

(12)

where the support of the density function f(x) is (−∞,∞).
Deep mathematical results imply that the index of stability,
α, satisfies the inequality 0 < α  ≤ 2. This parameter
determines, for large modulus of the coordinates, the Lévy
distributions. Lévy laws with index of stability α tend to
power-laws and the exponent of the decay of these
distributions is given by 1 + α, f(x) → |x|−1−α for |x| → ∞.

Although the proof that the shape given in eq. (12) is
unique and that 0 < α ≤ 2 is rather complicated, it is easy
to show that these Lévy distributions are indeed stable
under convolutions,

(13)
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(14)

so after appropriate shifting and rescaling the stable
distributions remain invariant. Observe that eq. (14)
generalizes the well known quadratic addition rule of vari-
ances of convoluted Gaussian distributions to the case of
stable distributions.

In the following, let us adopt the notation of Nolan [9].
Our choice corresponds to the S(α,β = 0, γ = R/21/α, δ =
x0;1) convention. In order to simplify the results, and to
present results that are similar to the ones used in data
fitting in high energy and nuclear physics, we have re-scaled
the scale parameter γ of the Lévy distributions and
introduced a physical notation as follows:

(15) R = 21/αγ      x0 = δ    (if β = 0).

In the chosen S(α,β,γ,δ;1) convention for symmetric stable
distributions, the parameter δ coincides with x0, the location
parameter of the distribution, characterising the position
of particle production. (This parameter is irrelevant in
Bose-Einstein correlation studies, we shall see that it
cancels from both the two- and the three-particle corre-
lation functions.) In this notation, the one dimensional
symmetric Lévy-stable distribution yields the following,
simple form of the two-particle BEC:

(16) C(q) = 1 + exp(−|qR|α).

This form that has an additonal parameter, the index of
stability α, as compared to the usual Gaussian (or expo-
nential) distribution, where the value of α is fixed to 2 (or 1).
This result can be generalized straightforwardly to multi-
dimensional expanding, core-halo type of systems. Two
examples are given here, for more throughout discussion
see Ref. [3].

Example a). For collisions with non-relativistic energy,
and a small duration of particle emission, symmetric Lévy
distributions yield the following Bose-Einstein correlation
function [3]:

(17)

As usual, core-halo corrections [6, 10] introduce the
intercept parameter λ. The three-dimensional expansion
of the core results in a multivariate decomposition of q.
All the fit parameters may depend on the mean momentum,
(λ,R2

ij, α) = (λ(K), R2
ij,(K), α(K)), where K = 0.5(k1 + k2).

Example b). For very high energy collisions, the particle
emission process becomes a highly relativistic phenomenon.
In this case, the invariance of the emission function can be
reflected if the longitudinally boost-invariant proper-time
variable τ = √t2 – r2

z is utilized, and the space-time rapidity
η = 0.5log[(t + rz)/(t − rz)] is also introduced as a hyperbolic,
boost-additive coordinate.

In a factorized form, the Buda-Lund (BL) parameter-
ization assumes the following structure for the emission
function [4]:

(18) S(x,k) = H*(τ)G*(η)I*(rx,ry)

where the subscript * denotes an implicit momentum
dependence. The effective proper-time and space-time
rapidity distributions H*(τ) and G*(η) are assumed to have
a uni-variate Lévy distributions with indexes of stability α=
and α||, while I*(rx, ry) may have a bivariate Lévy distribution
with index α⊥ . We use the symbolic notation [2] of the
invariant temporal and the parallel relative momentum
differences, Q= and Q||, being conjugated variables to the
space-time variables (τ,η). In these variables, the correla-
tion function is

(19)

(20)

(21)

(22)

In these equations, mt,i = √m2 + k i
2  is the transverse mass,

yi = 0.5ln[(Ei + kz,i)/(Ei − kz,i)] is the rapidity of particle i
and the fit parameter η− stands for the space-time rapidity
of the point of maximum emissivity for particles with a given
fixed four-momentum ki [4, 10]. The three different indexes
of stability satisfy the usual unequality 0 < αi ≤ 2 for all i =
(=,||,⊥ ). All the five fitted scale parameters, λ, R=, R||, R⊥
and η−, as well as the three Lévy indexes α=, α|| and α⊥  may
depend on the value of the mean momentum K.

Finally, let us consider the case of three-particle Bose-
Einstein correlations. If the particle emission is completely
chaotic and the plane-wave approximation can be warranted,
this reads as

(23)

where the symbolic notation f
~

(i, j) == f
~

(ki – kj) == f
~

(qij) has
been introduced to simplify the equation. The three-par-
ticle cumulant correlation function corresponds to the last
term,

(24)

where the two-particle cumulant correlation function is
defined as

(25)

Hence, the normalized and symmetrized ratio

(26)

turns out to be a simple function of β, the asymmetry par-
ameter:
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(27) ϖ(1,2,3) = cos ϕ

(28)

(for the special case of α = 1, see again Ref. [9].) In the
above equation, the summation is taken over the cyclic
permutations, (i,j) = (1,2), (2,3), or (3,1). Note that the
displacement parameter δ = x0 cancels from this result.

In eq. (28) all parameters are determined from the two-
particle correlation function with the exception of β. This
parameter is limited to the range of –1 ≤ β ≤ 1, it is called
the asymmetry parameter of Lévy distributions, and can
thus be determined from the relative momentum depend-
ence of the normalized three-particle cumulant correlation
function ϖ. Note that symmetric stable distributions corre-
spond to the case of β = 0, hence in that case ϕ = 0 and
ϖ(1,2,3) = 1 even at large relative momenta. Thus, all the
essential parameters, α, β, and γ = R/21/α of stable source
densities can be reconstructed from two and three particle
correlation data. Let us emphasize that the result of
eq. (28) is valid only within the plane-wave approximation
and neglecting possible partial coherence in the source
[2, 5].

In summary, we have determined the generic structure
of Bose-Einstein correlations for the case when the coordi-
nates of particle emission are obtained as convolution of
many elementary subprocesses. Such processes can be
attributed to parton-parton collisions, jet fragmentation,
hadronization, rescattering and decay of hadronic reson-
ances.

Our choice of multiple convolution of various element-
ary probability laws was motivated by a recent paper by
A. Bialas [1], which considered Bose-Einstein correlations
for the case, when the radius of a Gaussian source fluctuates
from event to event. Numerically, similar results were
obtained by Utyuzh, Wilk and Włodarczyk in Ref. [11]
when considering Bose-Einstein correlations for sources
with a fractal, power-law structure in space-time.

We find that the general shape of the Bose-Einstein
correlation functions is a stretched exponential form. This
is an exact analytic result, valid for all values of the relative
momentum q, if the particle production is described by
a stable law. Thus a new, experimentally measurable par-
ameter is introduced to HBT or Bose-Einstein correlation
studies, the Lévy index of stability, α. The corresponding
Lévy stable distributions decay in the coordinate space as
|x|−1−α or large values of |x| see Ref. [3] for greater details.
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