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Introduction

Positron is a very useful probe for investigation of bulk
solids and surfaces. The positron is the lightest positive
particle and, moreover, it is an antimatter particle in our
ordinary matter world, therefore it is free from exchange
forces. Positron injected into a solid losses its initial kinetic
energy and reaches the thermal energy in a relatively short
time (as compare with its common lifetime). After the
thermalization stage the further displacement of positron
has a diffusive character. Although the positron is a stable
particle it does not move diffusively very long because the
annihilation and the capture in a localized state can break
its migration. That is why both the diffusion constant D+
and the mean time of diffusive movement τdiff are an
important characteristics of the diffusion stage of positron
life. With this two parameters one can define a new
parameter, positron diffusion length [L+ = (D+τdiff)

1/2]
characterizing the distance that thermalized positron can
travel before annihilation or capturing.

In nonmetals diffusive migration of positron can be
preceded by forming a positronium atom (Ps – the
positron−electron bound state). In such a case one should
consider the positronium diffusion constant DPs and the
positronium diffusion length LPs. Positron (Ps atom)
diffusion length can be determined from the experiments
where the effects connected with the possibility of reaching
by the positron (Ps atom) of a surface or an interface are
observed. Here we present formulas based on the respect-
ive diffusion equations, and related to the problem, for two
different geometrical situations. These formulas are further
compared with those obtained on the basis of two models
being not good approximation of the problem.
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Escape coefficient for a thin layer sample

Let us consider a thin layer, of thickness l, in which positrons
are uniformly implanted as thermalized with the intensity
of implantation S. It means that the equilibrium concen-
tration of positrons c can be treated as dependent only on
one coordinate, say x, being perpendicular to layer
boundaries and that c fulfils the equation

(1)

where: L+ is the positron diffusion length; and D+ the re-
spective diffusion constant. If one assumes that the possibil-
ity of leaving the sample through the boundary (or of trapping
at the boundary) is determined by the relation (see e.g.
[9])

(2)

where: JEsc(x0) is the density of escaping positron current
and c(x0) the equilibrium positron concentration at the
boundary (situated at x = x0). The sign in front of D+ should
be the same as that of the derivative dc(x)/dx. In the
considered case x0 has two values, say xmin and xmax = xmin + l,
and the relation JEsc(xmin) = JEsc(xmax) =−  JEsc is obvious. With
taking this into account, a solution of Eq. (1) under the
condition (2) gives for JEsc the formula

(3)

Using this formula one can obtain the following formula
for the probability K that a positron implanted in a layer
leaves the layer interior (escapes from it being surfacely
trapped or/and reemitted) [2]:

(4)

where: nImpl denotes the number of positrons implanted in
the layer; nEsc stands for the number of the implanted
positrons which escape from the layer interior (through
both layer surfaces); and l is the layer thickness. Further,
the quantity K will be called the escape coefficient.

Commonly it is assumed that for perfectly not reflecting
boundary one can take α = ∝ . A validity of such approxi-
mation was discussed by Dębowska and Świątkowski [7]).
We will follow this assumption.

For α = ∝  the formula (4) takes the form [11]:

(5)

More general treatment of the considered here problem
(for different geometries), which leads as well to the
formula (5), one can find in the paper of Brandt and Paulin
[6].

Probability of escaping (e.g. reemission) of positrons
through a flat boundary of a thick sample

Let us now consider the possibility of leaving of a thick
uniform sample through its flat boundary by positrons being
firstly implanted in the sample. Taking in Eq. (1) S as being
different from zero only for the distance from the boundary
equal to z, one can (with condition (2) and α = +∝ ) obtain
the probability p(z) of remission of positrons as equal

(6)      p(z) = exp(−z/L+).

If P(z) denotes the implantation profile, then the global
probability of reemission (the escape coefficient) is given
by the commonly used formula (see, e.g. [8]):

(7)

with p(z) given by Eq. (6).
The formulas (4)−(7) may be used not only for posi-

trons, but as well for other objects with limited diffusion
time (e.g. for Ps atoms) implanted/created and then
diffusing in the sample (for Ps atoms parameters D+ and
L+ should be replaced with DPs and LPs).

As it was shown, for geometrically simple situations one
can easily obtain respective escape coefficients (K) without
using any “simplified” models. Unfortunately, in some cases
such models were used leading to very wrong results. Two
of them will be discussed below.

The geometrical model used by SERNA

In a paper by Serna [10], the so called geometrical model
was proposed to obtain the formula giving the escape
coefficient for Ps atoms (related there to the transition of
the atoms from crystalline to amorphous phase), created
uniformly in a flat layer of thickness l and characterized by
the diffusion length LPs. According to the model, a Ps atom
starting its diffusive movement at a given point moves up
to reaching the distance LPs from the starting point. If in
a choosen direction the sample ends at the distance less than
LPs from the point, then the Ps atom escapes from the layer.
It means that in the model it is assumed that the diffusive
movement of the Ps atom is rather close to the α-par-
ticle movement than to the real diffusive movement. Using
this model, Serna obtained the formula

(8)

instead of Eq. (5). Some results obtained with formula (5)
and formula (8) are presented in Fig. 1 for comparison. As
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it is seen there is a great discrepancy between the results
obtained using Serna’s model (formula (8)) and formula
(5). According to Serna, one series of his experimental
points could be well fited by the line corresponding to LPs
= 10 nm. As it is seen in Fig. 1, a similar shape to Serna’s
curve for LPs = 10 nm could have the curve obtained with
formula (5) and corresponding to LPs being somewhat less
than 3 nm. Thus the model used by Serna and his estimation
of LPs value cannot, anyway, be treated as some approxi-
mation of reality; instead of LPs close to 3 nm the LPs
obtained by him is close to 10 nm.

The model of spherical segment

In a paper by Anwand et al. [1], for the calculation of the
fraction of Ps atoms leaving a sample another model, called
by the authors “the model of spherical segment”, was used.
According to the model, a Ps atom created at a given point
can reach due to its diffusive movement any place in the
sphere of radius LPs (the point is a center of this sphere)
with the same probability. According to these authors “the
Ps gets chance to leave the sample in the case when its
diffusion length is longer than its implantation depth”. It
means that they proposed to calculate the escape coefficient
using formula (7) with p(z) not given by Eq. (6) but equal
to

(9)

In addition, in calculations done in paper [1] the Makhov
implantation profile was used as P(z). Here, taking from
[1] the parameters related to synthetic alpha-quartz A, the
dependence of  the escape coefficient on diffusion length
was calculated both with formula (6) and formula (9). The
results are shown in Fig. 2. Additionaly, in Fig. 2 a similar
result obtained with the use of Serna’s model is shown.

As it is seen, there is a great discrepancy between the
results obtained with formula (9) and with formula (6). The

experimental escape probability for Ps atoms created in
synthetic alpha-quartz A estimated in the paper [1], related
to the implantation of monoenergetic positrons of 1.03 keV,
was close to 0.1.

Thus it follows from Fig. 2 that according to the
spherical segment model LPs ≅  20 nm, whereas accurate
calculations give LPs ≅  5 nm; Serna’s model gives for this
case LPs ≅  15 nm. It should be mentioned that in paper [1]
LPs for alpha-quartz A was found as being equal to 18 nm.
The small difference between this value (18 nm) and that
obtained in this work 20 nm may be a result of using in
Makhov formula different parameters. Nevertheless, it is
quite clear that the spherical segment model (as well as
Serna’s model) is very wrong.

Some remarks related to the interpretation of diffusion
length

The models discussed above indicate that even experienced
authors do not well interpret the diffusion length. The
physical quantity, called the diffusion length, is in common
use not only in positron problems but also in neutron and
semiconductor physics. Especially many problems, related
to neutron diffusion, for different geometries (see, e.g. [4]),
were solved. In each case the diffusion length L (see
Eq. (1)) is defined by the relation

(10)

where D is the diffusion constant and τdiff denotes the mean
time of the diffusion. Unfortunately, in positron physics
this formula is not commonly acceptable. For example, in
papers by Brandt [5] and Bergersen et al. [3] instead of
formula (10) another relationship,

(11)

is used. Sometimes you can find the term “mean diffusion
length” as equivalent of “diffusion length”. It seems thus
that it would be suitable to remember certain relations

Fig. 2. The dependence of the escape coefficient K on the Ps dif-
fusion length as calculated using the accurate formula (curve 1),
the spherical segment model (curve 2), and Serna’s model
(curve 3).
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Fig. 1. The dependence of the escape coefficient K on the layer
thickness obtained with formula (8) used by Serna (smooth lines)
and with formula (5) (dashed lines). The smooth lines A, B, C
and D correspond to LPs equal 5, 10, 15 and 20 nm, respectively;
the dashed lines a, b, c and d are related to LPs equal to 1, 3, 5 and
7 nm, respectively.
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connected with diffusion length as they are treated in
neutron physics.

Solving of diffusion equation

(12)

(Eq. (1) is its special variant) for a point source situated
in an infinite uniform material at the center of coordinate
(x = y = z = 0) one can obtain for the equilibrium
neutron/positron concentration c the formula

(13)

Using this formula it is easy to come to the following
conclusions:
1.    The mean distance r− from the source to the place where

the diffusive movement of the particle ends is

(14)       r− = 2L.

2.   The mean value  r−2  of the square of the above distance
is

(15)       r−2 = 6L2.

3.  About 26% of positrons end their diffusive move-
ment in the sphere of radius L with the center in the
source; for the sphere of radius 2L the corresponding
amount is 59%.

Final remarks

As it is seen from formula (14), the mean distance from
the place where the diffusive movement begins to that
where it ends is equal to two diffusion lengths. If one
calculates such value basing on the above considered
models, the result is  r− = L according to Serna’s model and
r− = (3/4)L within the spherical segment model. From each
of the two models it follows that all the Ps atoms diffusing
in an infinite sample, end their diffusion motion in the
sphere (centered at the source) of radius L; as it was
pointed out earlier, the accurate prediction is only 26%.
At the end, let us turn to the probability p(z). Considering

the upper limit of p(z), we have for z = 0. The accurate
value of p(0) related to formula (6) equals 1, whereas both
models gives p(0) = ½. Thus, the discussed models should
be treated as very wrong in all aspects.

It is not possible to know how many papers give wrong
estimations of diffusion lengths. In many cases it is not
precised if we have accurate calculations or some “sim-
plified procedure”. Especially in some papers where diffu-
sion length is estimated you can meet Anwand and Brauer
(coauthors of paper [1]) as coauthors of the papers.
Sometimes it is not clear which procedures were used in
these cases.

Thus, one can be very careful in using diffusion length
values taken from the papers where the procedures were
not enough precisely described.
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