
Introduction

A successive theoretical description of DPF discharge
dynamics, including generation of the energetic deuterons
and directed electron beam, demands a detailed information
about nonlinear processes of plasma-current interaction. 

Here, some experimental findings have received further sup-
port through certain results of the analytical theory of tan-
gential discontinuity instability. At the beginning of the rela-
tion between the agreed parameters of DPF and electric cir-
cuit is demonstrated. Then the theory of tangential discon-
tinuity is used to reveal the properties of pinching plasmas.
Analyzing them, one can conclude that the employment of
the heavy inert admixtures and mismatch of DPF lead to bet-
ter pinching. 

Finally, we offer to place an array of parallel isolator fibers
on the anode near the discharge camera axis that can reduce
an azimuthal pinching plasma motion and, therefore, an
influence of tangential discontinuity on current-plasma
dynamics.

Matched DPF

Recall [1] that DPF is a matched load in an electric circuit
if a current sheath of discharge reaches the axis in a quarter
of a current pulse period. Let us assume that the current
sheath velocity V is proportional to the Alfven plasma veloc-
ity VA. Then the condition under which DPF and an electri-
cal circuit are matched can be written as:
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Abstract A global instability theory of pinching plasmas allows us to justify the well-known empirical facts of the use of a mis-
matched dense plasma focus (DPF) and heavy inert gas admixtures. We assume that an instability of tangential discontinuity is
responsible for the instability of a current-carrying plasma column. To inhibit development of a tangential discontinuity in a
plasma focus, an array of insulator fibers or metallic wires placed on the anode near the axis of a discharge camera can be used.
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(1)

Here R0 is the radius of a cathode, r0 and z0 are the radius
and height of a anode, I0 is the amplitude of a discharge cur-
rent, ρ0 is the gas density in a focus camera, ω is the electric
circuit frequency, and K = V/VA. In formula (1) all the val-
ues are given in the Gaussian units. Deriving the above rela-
tion, we employ a snowplow model for plane and cylindrical
current sheaths.  

According to formula (1), at I = I0 a column of pinching plas-
ma has the smallest diameter and a derivative of current with
respect to time is equal to zero: dI/dt = 0. In practice, the
tightest pinch was detected at the moment when the dis-
charge current began to decrease after a maximum value
(see, e.g., the experiments in a wide range of pinching plas-
mas, including DPF [2], vacuum spark [3] and array Z-pinch
[5]. In Fig. 1 the arrow indicates the favourable regime. It
turns out that dI/dt is an important parameter of the theory
of instability of tangential discontinuities in pinching plasmas
[4, 6].

Main relations

In a tangential discontinuity, plasma velocity v and mag-
netic field H are tangent to surfaces of discontinuity and
experience an arbitrary jump in value and direction. In
hydrodynamics (HD) and magnetohydrodynamics (MHD)
tangential discontinuities are unstable, and these instabilities
give a birth to the turbulence in HD and MHD. We assume
that the instability of pinching plasmas could be due to the
tangential discontinuity whose increment strongly depends
on current density. The tangential discontinuity is an inter-
face joining two plasma columns revolving on an axis at dif-
ferent frequencies (one column on top of another). These
rotations could arise from the initial azimuthal and axial
inhomogeneities of a discharge, when a plasma has an angu-
lar momentum due to the ponderomotive forces. During
plasma pinching, the laminar dynamics of a discharge can be
disrupted by the above instability. In Fig. 2 the axis of dis-
charge and direction of current is denoted by an arrow. The
bold-faced curve indicates a tangential discontinuity.

To examine the instability of tangential discontinuities we
linearize the equations taking into account the electron vor-
ticity effect on the plasma motion and magnetic field behav-
iour [4, 6]. From the linearized system the dispersion relation
between the frequency ω and the wave vector k of discon-
tinuity disturbances is derived: 

(2)

where j is the component of current density normal to the
surfaces of discontinuity. In (2) the braces denote the differ-
ence of two values of the internal parameter, 0 < |k| ≤ kmax
and kmax is determined by the dispersion length c/ωp.

Let us examine the plasma dynamics limit, when the electro-
magnetic terms in (2) are dominant on both sides of the dis-
continuity. Then, the solution of (2) can be written as

(3)   

where 

Let us evaluate the scale T = 1/ℑω of temporal evolution of
the discontinuity in response to the above instability. Take
that the discharge current I is of the order of 1 MA, the pinch
radius r is of the order of 1 cm, the deuterium concentration
N is of the order of 1018 cm–3, k ≥ ωp/c. We obtain that T ≥10 ns.

Here, the time variation of current – increase or decrease –
must be much slower than the temporal evolution of discon-
tinuity, that is

(4)

where ℑω max = ℑω (kmax). The total derivative dj/dt takes into
account a term corresponding to the current drift effect. 
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Fig. 1. Mismatched DPF.

Fig. 2.  Current-carrying plasma
column divided by tangential dis-
continuity.
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According to the asymptotic analysis widely used in theor-
etical studies (for example, in a kinetic description, plasmas
are classified as collisional or collisionless if the collision fre-
quency justified in quasi-static contexts is accounted for), the
above instability should not develop when there is a rapid
current variation, that is, at

(5) 

For separation of the stable modes from the unstable ones it is
convenient to employ the solution jcr of the balance equation

(6)            

where ℑω cr ∝ jcr. Then, for a stable mode 

(7)           

at each current pulse time on the surface of the discontinuity.

The current drift velocity is an intrinsic parameter of the
complex plasma-current flow and, therefore, cannot be con-
trolled. On the contrary, a partial derivative of current with
respect to time is determined by the discharge current pulse.
Thus, modulation of the current pulse can be a technique for
stabilization of a tangential discontinuity.

Let us demonstrate the possibility in an idealized case.
Instead of complex dynamical structures of current in pinch-
ing plasmas (for example, shock waves, filaments) we con-
sider a cylindrical column of homogeneous plasma (with a
constant plasma density equal to an averaged density)
through which a uniform current (a current density is equal
to an averaged current density) flows. Then the solution of
(6) has the form 

(8)

where I0 and t0 are the arbitrary constants. This solution
monotonically increases for t < t0 and monotonically
decreases for t > t0. Thus, when t0 corresponds to the maxi-
mum current I0, the tangential discontinuity is stabilized if
dI/dt > dIcr/dt for the first half-period of the current pulse
and if dI/dt < dIcr/dt for the second half-period. In Fig. 3 the
dash curves denote the solutions of the balance equation and
a current discharge pulse is the bold curve.

Conclusion

One may conclude that the tangential discontinuity is
unstable in the vicinity of t0. And we achieve a more stable
DPF regime when the current pulse singularity occurs at the
moment after or before the first quarter of the current pulse
period. 

A different method of stabilizing the tangential discontinuity
is the use of Argon and Xenon admixtures. Indeed, the scale
of temporal evolution of tangential discontinuity T ∝ √

—
m,

where m is an effective mass of plasma ion. When an admix-
ture molecule mass increases, T increases, too.

Another opportunity to suppress the above instability in the
early stages is to create a small scale plasma azimuthal inho-
mogeneity by means of a large number of straight parallel
wires [5]. Because DPF has a power much less than the
power of current pulse generator, we offer to change metal-
lic wires by isolator fibers on an anode surface near the dis-
charge axis. These fibers (wires) may be an obstacle and may
inhibit an azimuthal plasma motion near a central part of the
DPF anode.
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Fig. 3. A family of the solutions of the balance equation.


