4.2.2. Metionina i jej pochodne

Badania zostały przeprowadzone dla wybranych pochodnych metioniny.

Badane związki

Taki dobór badanych związków umożliwił:

(i) rozstrzygnięcie, który z cyklicznych rodników: kationorodnik z wewnątrzcząsteczkowym wiązaniem S \therefore N czy rodnik z wewnątrzcząsteczkowym wiązaniem S \therefore O jest produktem pośrednim w procesie prowadzącym do dekarboksylacji metioniny;

(ii) wyznaczenie stałej szybkości reakcji wewnątrzcząsteczkowego przeniesienia protonu z grupy $-NH_3^+$ do rodnika hydroksysulfuranylowego. Proces ten z powinien konkurować z procesem przeniesienia protonu ze środowiska reakcji i prowadzić do powstawania kationorodników z wewnątrzcząsteczkowym wiązaniem trójelektronowym pomiędzy siarką tioeterową i azotem grupy aminowej.;

(iii) określenie wpływu podstawnika (C_2H_5 , $n-C_4H_9$) w grupie tioeterowej na procesy rodnikowe prowadzące do kationorodników z wewnątrzcząsteczkowym wiązaniem S \therefore N i kationorodników dimerowych z międzycząsteczkowym wiązaniem S \therefore S;

(iv) identyfikację rodnikowych produktów dekarboksylacji metioniny (rodników α -aminoalkilowych), poprzez reakcję z p-nitroacetofenonem.

4.2.2.1. Wyniki badań i ich omówienie

<u>Radioliza impulsowa</u>

L-metionina (Met)¹ - W środowisku silnie kwaśnym (pH 1 - 3,5) reakcja rodników OH z metioniną w skali czasowej kilkudziesięciu nanosekund prowadzi do powstania szerokiego pasma z maksimum absorpcji $\lambda_{max} \sim 390$ nm (rysunek 4.2.2_1 krzywa a). Absorpcja z $\lambda_{max} \sim 390$ nm nie występuje w Ac-Met i Ac-Met-OMe (vide infra) pomimo potencjalnych możliwości powstawania w tych związkach wewnatrzczasteczkowego wiazania trójelektronowego typu S∴O. Pozwala to na do obserwowanego metioninie kationorodnika przypisanie pasma W z wewnatrzczasteczkowym wiazaniem trójelektronowym S :: N. W skali mikrosekundowej wybudowuje się pasmo absorpcji $\lambda_{max} \sim 480$ nm (rysunek 4.2.2_1 charakterystyczne dla kationorodnika krzywa b), dimerowego z międzycząsteczkowym wiązaniem S: S, któremu towarzyszy pasmo rodników α -(alkilotio)alkilowych $\lambda_{max} \sim 290$ nm.

¹ Użycie enancjomerycznej D-metioniny nie wpływa znacząco na obraz obserwowanych zjawisk.

Rys. 4.2.2_1 Widma absorpcyjne produktów przejściowych $2*10^{-3}$ mol dm⁻³ roztworów Met, nasyconych N_2O , w pH 1 40 ns (a) i 1,5 µs po impulsie (b), i w pH 6,9 40 ns po impulsie (c).

W pH bliskim obojętnego (pH 6,9) dominującym pasmem absorpcji jest pasmo z λ_{max} ~ 390 nm (rysunek 4.2.2_1 krzywa c), które w czasie około 0,8 µs przekształca się w pasmo z λ_{max} w zakresie nadfioletu przypisane rodnikom α-aminoalkilowym.

N-acetylo-L-metionina (Ac-Met) - W środowisku silnie kwaśnym (pH 1 - 3,5), w czasie około 2 μ s po impulsie wybudowuje się charakterystyczne dla kationorodników dimerowych z międzycząsteczkowym wiązaniem S.: S pasmo absorpcji z $\lambda_{max} \sim 490$ nm (rysunek 4.2.2_2 krzywe a i b); pasmo to w pH 1 zanika, w czasie dłuższym od 200 μ s. Podobnie jak w Met, pasmu absorpcyjnemu kationorodników dimerowych (S.: S)⁺ towarzyszy pasmo o słabszej intensywności ($\lambda_{max} \sim 290$ nm) przypisane rodnikom α -(alkilotio)alkilowym.

W środowisku obojętnym i zasadowym (pH 7 - 10) w Ac-Met obserwuje się, w nanosekundowej skali czasowej pasmo rodnika hydroksysulfuranylowego z $\lambda_{max} \sim$ 340 nm (rysunek 4.2.2_2 krzywa c), pasmo to przekształca się w pasmo kationorodnika dimerowego (S:S)⁺z $\lambda_{max} \sim$ 490 nm, z szybkością zależną od pH roztworu i stężenia Ac-Met.

Rys. 4.2.2_2 Widma absorpcyjne produktów przejściowych $2*10^{-3}$ mol dm⁻³ roztworów Ac-Met, nasyconych N_2O , w pH 1 40 ns (a) i 2 µs po impulsie (b), i w pH 7 40 ns po impulsie (c).

Ester metylowy L-metioniny (Met-OMe) - W środowisku silnie kwaśnym (pH 1 - 3,5) w wyniku reakcji rodników OH z Met-OMe w skali kilkudziesięciu nanosekund obserwuje się poszerzone pasmo absorpcji z $\lambda_{max} \sim 390$ nm. Jest to spowodowane nałożeniem pasma absorpcji kationorodników z wewnątrzcząsteczkowym wiązaniem S.: N z pasmem absorpcji rodników hydroksysulfuranylowych (rysunek 4.2.2_3 krzywa a).

W mikrosekundowej skali czasu wybudowuje się pasmo absorpcji kationorodników dimerowych z międzycząsteczkowym wiązaniem S: S z $\lambda_{max} \sim 480$ nm, (rysunek 4.2.2_3 krzywa b), któremu towarzyszy charakterystyczne dla rodników α -(alkilotio)alkilowych pasmo $\lambda_{max} \sim 290$ nm. W pH bliskim obojętnego (pH 6,7) dominującym pasmem absorpcji jest pasmo $\lambda_{max} \sim 390$ nm, którego czas życia sięga setek mikrosekund (rysunek 4.2.2_3 krzywa c).

Rys. 4.2.2_3 Widma absorpcyjne produktów przejściowych $2*10^{-3}$ mol dm⁻³ roztworów Met-OMe, nasyconych N_2O , w pH 1 40 ns (a) i 2 µs po impulsie (b), i w pH 6,7 90 µs po impulsie (c).

Ester metylowy N-acetylo-L-metioniny (Ac-Met-OMe) - Podobnie jak w Ac-Met, w środowisku silnie kwaśnym (pH 1 - 3,5), w czasie około 2 µs po impulsie elektronów wybudowuje się pasmo absorpcji kationorodników dimerowych z międzycząsteczkowym wiązaniem S \therefore S z $\lambda_{max} \sim 490$ nm (rysunek 4.2.2_4 krzywe a i b). W pH 1 pasmo to zanika, w czasie dłuższym od 200 µs. Podobnie jak w pozostałych związkach pasmu kationorodnika dimerowego (S \therefore S)⁺ towarzyszy pasmo rodników α -(alkilotio)alkilowych ($\lambda_{max} \sim 290$ nm).

W środowisku obojętnym i zasadowym (pH 7 - 10) w Ac-Met-OMe obserwuje się w nanosekundowej skali czasowej pasmo rodnika hydroksysulfuranylowego z $\lambda_{max} \sim 340$ nm (rysunek 4.2.2_4 krzywa c), pasmo to w czasie około 1 µs przekształca się w pasmo przypisane kationorodnikowi dimerowemu (S:S)⁺ z $\lambda_{max} \sim 490$ nm.

Rys. 4.2.2_4 Widma absorpcyjne produktów przejściowych $2*10^{-3}$ mol dm⁻³ roztworów Ac-Met-OMe, nasyconych N_2O , w pH 1 40 ns (a) i 2 µs po impulsie (b), i w pH 6,8 40 ns po impulsie (c).

L-etionina (Eth)² i L-butionina (Hcy(nBu)): - W środowisku silnie kwaśnym (pH 1 - 3,5) reakcja rodników OH z Eth i Hcy(nBu) w skali czasowej kilkudziesięciu nanosekund prowadzi do powstania szerokiego pasma z maksimum absorpcji $\lambda_{max} \sim 390$ nm. Analogicznie jak w Met, w mikrosekundowej skali wybudowuje się pasmo absorpcji $\lambda_{max} \sim 480$ nm, charakterystyczne dla kationorodnika dimerowego z międzycząsteczkowym wiązaniem S.S, któremu towarzyszy pasmo rodników α-(alkilotio)alkilowych z $\lambda_{max} \sim 290$ nm. W środowisku obojętnym i zasadowym (pH 7 - 9,7) dominującym pasmem absorpcji jest pasmo z $\lambda_{max} \sim 390$ nm (S.N) które zanika w czasie około 1 µs.

Parametry kinetyczne

W Ac-Met i Ac-Met-OMe, w których acylowane grupy aminowe, na skutek elektronoakceptorowego działania podstawnika acetylowego, nie są w stanie pełnić funkcji donora protonów proces, prowadzący do powstania kationorodnika $(S \therefore S)^+$, jest główną drogą zaniku rodnika hydroksysulfuranylowego. Zarówno dla Ac-Met jak i Ac-Met-OMe zanikowi pasma absorpcji z $\lambda_{max} = 340$ nm charakterystycznego

² Użycie enancjomerycznej D-etioniny nie wpływa znacząco na obraz obserwowanych zjawisk.

dla rodnika hydroksysulfuranylowego towarzyszy jednoczesne powstawanie pasma absorpcji z $\lambda_{max} = 490$ nm charakterystycznego dla kationorodnika dimerowego (S.: S)⁺ (rysunek 4.2.2_5 A i B).

Rys. 4.2.2_5 Kinetyka zmian absorpcji odpowiadającej zanikowi rodników hydroksysulfuranylowch (340 nm) i powstawaniu kationorodników $(S:S)^+$ (490 nm), w 2*10⁻³ mol dm⁻³ Ac-Met o pH 7 (A) i w 2*10⁻³ mol dm⁻³ Ac-Met-OMe o pH 6,8 (B), w funkcji czasu.

Podobnie jak dla kwasów alkilotiokarboksylowych, zanik rodnika hydroksysulfuranylowego w Ac-Met i Ac-Met-OMe jest procesem pseudopierwszorzędowym zależnym zarówno od stężenia aminokwasu [S] jak i stężenia protonów obecnych w środowisku $[H_3O^+]$.

Rys. 4.2.2_6 Obserwowana pseudo-pierwszorzędowa stała szybkości reakcji zaniku rodnika hydroksysulfuranylowego ($\lambda_{max} = 340 \text{ nm}$) dla Ac-Met (A i B) i Ac-Met-OMe (C i D) w zależności od [H₃O⁺] stężenie aminokwasu [S] = 2*10⁻³ mol dm⁻³) i w zależności od stężenia aminokwasu [S] (pH = 7).

Stałe szybkości k_d , k_H i k_s dla Ac-Met i Ac-Met-OMe wyznaczono metodą opisaną w punkcie 4.2.1.1 wykorzystując równanie (XXI). Rezultaty otrzymane podstawie danych przedstawionych na rysunku 4.2.2_6 zebrane są w tabeli 5.

Tabela 5 Parametry kinetyczne reakcji rodnikowych N-acetylowych pochodnych metioniny

Związek	<i>k_d</i> *10 ⁻⁶ [s ⁻¹]	$k_{H} * 10^{-10}$ [mol ⁻¹ dm ³ s ⁻¹]	$k_{s}*10^{-7}$ [mol ⁻¹ dm ³ s ⁻¹]
Ac-Met	1,91	2,52	5,97
Ac-Met-OMe	0,50	1,24	1,74

Wydajność dekarboksylacji

 $G(CO_2)$

Dla Met i Ac-Met dekarboksylacja zachodzi w całym badanym zakresie pH (0 - 10,5). Wydajność $G(CO_2)$ w zakresie pH 0 - 3 wzrasta ze spadkiem kwasowości roztworu, osiągając w pH > 2,5, w Met 80 - 100%, a w Ac-Met 45 - 55% wydajności początkowej rodników OH (rysunek 4.2.2_7 krzywe a i c). $G(PNAP^{-})$

Pomiary wydajności rodnikowych produktów dekarboksylacji Met z pnitroacetofenonem³ pokazały, że powstające rodniki α-aminoalkilowe redukują

³ Jak już wspomniano (w punkcie 2.3.3) stosunkowo niski potencjał redoks p-nitroacetofenonu (PNAP) E^o(PNAP/PNAP⁻) = -0,35 V (Wardman 1989) pozwala na rozróżnienie rodników α - (alkilotio)alkilowych (słabych reduktorów) od α -aminoalkilowych. Rodniki α -aminoalkilowe redukują p-nitroacetofenon w reakcji [37].

PNAP do PNAP·⁻ z pełną wydajnością (rysunek 4.2.2_5 krzywa b); rodniki αamidoalkilowe powstałe podczas dekarboksylacji Ac-Met nie redukują PNAP, G(PNAP·⁻) < 0,3 (rysunek 4.2.2_7 krzywa d).

Rys. 4.2.2_7 Wydajności chemoradiacyjne $G(CO_2)$ i $G(PNAP^{-})$ w Met (krzywe a - \bigcirc i b - \bigcirc) i Ac-Met (krzywe c - \square i d - \blacksquare) w zależności od pH, Dla pomiarów wydajności CO_2 w zakresie pH 0 - 3,5 stężenia związków wynosiły 10⁻² mol dm⁻³, a w pH > 3,5 2*10⁻³ mol dm⁻³, pomiary $G(PNAP^{-})$ zostały wykonane w 5*10⁻³ mol dm⁻³ roztworach aminokwasów zawierających 3*10⁻⁵ mol dm⁻³ PNAP.

Powstający w niej anionorodnik PNAP- $R-\dot{C}H-NH_2$ charakteryzuje się silną absorpcją w zakresie $UV-VIS \ z \ \lambda_{max} = 350 \ nm, \ \varepsilon = 17600 \ dm^3 mol^{-1} \ cm^{-1} \ i \ \lambda_{max} = 545 \ nm, \ \varepsilon = 2900 \ [dm^3 \ mol^{-1} \ cm^{-1}]$ (Adams i Willson 1973, Hiller i Asmus 1983).

EPR

W napromienionej w temperaturze 77 K, próbce zawierajacej 1.3*10⁻¹ mol dm⁻³ Met w 10⁻¹ mol dm⁻³ HClO₄, w temperaturze 77 - 120 K obserwuje się widmo pułapkowanych rodników OH zbliżone do oberwowanego przez Riederer'a *i in.*, 1983, w polikrystalicznym lodzie heksagonalnym. Po rozmrożeniu do temperatury 120 - 160 K, obserwuje sie tryplet o wartości współczynnika g = 2.004 i sprzeżeniu nadsubtelnym $A_{II} \approx 2$ mT. Świadczy to o powstawaniu rodnika zlokalizowanego na atomie wegla, w którym niesparowany elektron oddziałuje z dwoma protonami związanymi z tym samym atomem wegla. Widmo to jest analogiczne do obserwowanego przez Burlińską i in. 1994, w polikrystalicznych peptydach metioninowych wskazującego na powstawanie rodników α -(alkilotio)alkilowych. Tego typu rodniki powstają w Met podczas deprotonacji w pozycji α do atomu siarki. Dalsze ogrzewanie próbki, do temperatur 180 - 200 K prowadzi do obserwacji singletu z g = 2,01 i szerokości sygnału $\Delta H \approx 2,5$ mT charakterystycznego dla kationorodnika dimerowego $(S : S)^+$ (Champagne *i in.* 1991, Pogocki *i in.* 1994).