4.2. Wyniki doświadczeń

4.2.1. Związki modelowe - kwasy alkilotiokarboksylowe

Badania zostały przeprowadzone dla wybranych kwasów alkilotiokarboksylowych.

Badane związki¹

CH ₃ -S-CH ₂ -COOH	Kwas 2-(metylotio)-etanowy	[2-MTEA]	
HOOC-CH ₂ -S-CH ₂ -COOH	Kwas 2,2'-tiodietanowy	[2,2'-TDEA]	
CH ₃ -S-CH ₂ -CH ₂ -COOH	Kwas 3-(metylotio)-propionowy	[3-MTPA]	
HOOC-CH ₂ -CH ₂ -S-CH ₂ -CH ₂ -COOH	Kwas 3,3'-tiodipropionowy	[3,3'-TDPA]	
HOOC-CH ₂ -S-CH ₂ -CH ₂ -COOH	Kwas 3-(karboksymetylotio)-pro	pionowy [3-CMTPA]	
HOOC-CH ₂ -CH—COOH S CH ₂ -COOH	Kwas 2-(karboksymetylotio)-burs	ztynowy	
	[2-CMTSA]		

Taki dobór związków modelowych umożliwił:

(i) zbadanie warunków zachodzenia procesu dekarboksylacji w układach pozbawionych grupy aminowej;

(ii) ustalenie związku pomiędzy procesem dekarboksylacji, a tworzeniem wewnątrzcząsteczkowych wiązań trójelektronowych pomiędzy siarką tioeterową a tlenem karboksylowym. Procesy te, powinny być uwarunkowane długością łańcucha oddzielającego grupy karboksylowe od grupy tioeterowej i liczbą grup karboksylowych.

¹ Oznaczenia w nawiasach kwadratowych nie są oznaczeniami systematycznymi.

(iii) wyznaczenie parametrów kinetycznych, reakcji rodnikowych koniecznych do interpretacji wyników w aminokwasach tioeterowych;

(iv) sprawdzenie możliwości redukcji p-nitroacetofenonu przez rodnikowe produkty dekarboksylacji kwasów tioalkilowych (tj. rodniki α-(alkilotio)alkilowe);

(v) identyfikację i wyznaczenie parametrów widma EPR rodników α -(alkilotio)-alkilowych.

4.2.1.1. Wyniki badań i ich omówienie

Radioliza impulsowa

2-MTEA *i* 2,2'-TDEA (*kwasy zawierające grupy karboksylowe w pozycji* α *w* stosunku do siarki < α -CO₂H>): W zależności od pH i stężenia związków napromienianie impulsowe prowadzi do generacji różnych indywiduów przejściowych tj. rodników hydroksysulfuranylowych (addukty OH do siarki) (pH 5,7) oraz rodników α -(alkilotio)alkilowych (pH 1 i pH 5,7) (przykłady dla 2-MTPA przedstawia rysunek 4.2.1_1), charakteryzujących się odpowiednio pasmami absorpcji z $\lambda_{max} \sim 340$ nm i $\lambda_{max} \sim 285$ nm.

Rys. 4.2.1_1 Widma absorpcyjne produktów przejściowych $2*10^{-3}$ mol dm⁻³ roztworów 2-MTEA w pH 5,7 (nasycony N₂O) 40 ns (a) i 1,4 µs po impulsie (b) i w pH 1 (nasycony N₂) 70 ns po impulsie (c). Wstawka - kinetyka zaniku pasma absorpcji zarejestrowanego w $\lambda_{max} = 340$ nm.

3-MTPA *i* 3,3'-TDPA (*kwasy zawierające grupy karboksylowe w pozycji* β *w* stosunku do siarki < β -CO₂H>): W pH ~5,7 dla obydwu związków obserwuje się powstawanie 50 ns po impulsie szerokiego pasmo absorpcji w zakresie 260 - 600 nm z $\lambda_{max} \sim 400$ - 450 nm (rysunki 4.2.1_2A krzywa a, 4.2.1_2B krzywa a), z którego dla wysokich stężeń w czasie ~ 0,8 µs wybudowuje się pasmo z $\lambda_{max} \sim 480$ nm (rysunek 4.2.1_2A krzywa b).

Rys. 4.2.1_2 Widma absorpcyjne produktów przejściowych roztworów 3-MTPA, nasyconych N_2O , w pH 5,7: 10^{-2} mol dm⁻³ 50 ns (A-a) i 0,8 µs (A-b) 30 µs po impulsie (A-c); 2*10⁻³ mol dm⁻³ 190 ns (B-a) 2 µs (B-b) 30 µs po impulsie (B-c). C i D rozkład widm (A-a) i (B-a) na składniki metodą regresji liniowej.

Analiza matematyczna widm² pokazała, że powstają one w wyniku nałożenia pasm absorpcji $\lambda_{max} \sim 400$ nm (charakterystycznego dla rodników z

² Widma zostały rozłożone na składowe metodą regresji liniowej zgodnie ze wzorem (XX).

$$\Delta A(\lambda_j) = \sum_{i=1}^n \varepsilon_i(\lambda_j) a_i \quad (XX)$$

gdzie $\Delta A(\lambda_i)$ jest obserwowaną zmianą absorbancji a $\varepsilon_j(\lambda_j)$ molowym współczynnikiem absorpcji *i*tego indywidum dla *j*-tej długości fali światła absorbowanego). Element $\{a_i\}$ jest współczynnikiem wewnątrzcząsteczkowym wiązaniem S \therefore O) oraz $\lambda_{max} \sim 480$ nm (charakterystycznego dla kationorodnika z międzycząsteczkowym wiązaniem S \therefore S) (rysunki 4.2.1_2C i 4.2.1_2D).

W pH 1 dla obydwu związków obserwuje się powstawanie pasma absorpcji λ _{max} ~ 480 nm (S:S).

Podobnie jak dla 2-MTEA i 2,2'-TDEA utlenianie 3-MTPA i 3,3'-TDPA, zarówno w pH 1 jak i 5,7, prowadzi do powstawania rodników α -(alkilotio)alkilowych $\lambda_{max} \sim 285$ nm (rysunki 4.2.1_2A i 4.2.1_2B krzywe c).

3-CMTPA *i* 2-CMTSA (kwasy zawierające grupy karboksylowe w pozycji α *i* <u> β w stosunku do siarki</u> < α,β -CO₂H>): W pH 5,8 obserwuje się poszerzone pasmo absorpcji z $\lambda_{max} \sim 340$ nm powstające w wyniku nałożenia pasma absorpcyjnego rodników hydroksysulfuranylowych, z pasmami absorpcji rodników z wewnątrzcząsteczkowym wiązaniem S: O oraz rodników α -(alkilotio)alkilowych. Krótkożyciowe pasmo z $\lambda_{max} \sim 340$ nm przekształca się w pasmo z $\lambda_{max} \sim 285$ nm przypisane rodnikom α -(alkilotio)alkilowym z szybkością zależną od liczby grup karboksylowych w pozycji α do siarki (dla 2-CMTSA szybkość ta jest większa niż dla 3- CMTPA). W pH 1 dla obydwu kwasów obserwuje się jedynie pasma absorpcji z $\lambda_{max} \sim 285$ nm przypisane rodnikom α -(alkilotio)alkilowym.

Parametry kinetyczne

2-MTEA i 2,2'-TDEA $\langle \alpha$ -CO₂H \rangle ; Stałe szybkości addycji rodnika hydroksylowego do grupu tioeterowej kwasów 2-MTEA i 2,2'-TDEA ($k_{(OH+S)}$) zostały obliczone wykorzystując zmierzone eksperymentalnie pseudopierwszorzędowe stałe szybkości powstawania rodnika hydroksysulfuranylowego w funkcji stężenia kwasu alkilotiokarboksylowego ($k_{exp} = k_{(OH+S)}$ [S]). Wyniki pomiarów stałych szybkości wykonanych w $\lambda = 340$ nm dla stężeń kwasów 4,6*10⁻⁴ - 4*10⁻³ mol dm⁻³, w pH 5.7 są zebrane w tabeli 4.

Z kolei, zanik rodnika hydroksysulfuranylowego w 2-MTEA i 2,2'-TDEA jest procesem pseudo-pierwszorzędowym zależnym zarówno od stężenia tioeteru [S] jak

regresji, który w każdym przypadku jest równy ($c_j * l$), gdzie c_j jest stężeniem *i*-tego indywidum a *l* drogą optyczną (Bevington., 1969, Marciniak *i in*. 1993) Molowe współczynniki absorpcji rodników z wewnątrzcząsteczkowym wiązaniem S.: O i kationorodników dimerowych z międzycząsteczkowym wiązaniem S.: S wynoszą odpowiednio $\varepsilon_{SO}(410) = 1900 \text{ dm}^3\text{mol}^{-1}\text{cm}^{-1}$ i $\varepsilon_{SS}(480) = 7900 \text{ dm}^3\text{mol}^{-1}\text{cm}^{-1}$ (Pogocki *i in*. 1997).

i stężenia protonów obecnych w środowisku [H₃O⁺]. Stałą szybkości tego procesu k_{exp} (mierzoną w $\lambda = 340$ nm, wstawka na rysunku 4.2.2_1) można przedstawić jako sumę stałych szybkości trzech niezależnych procesów: (i) spontanicznej dysocjacji rodnika hydroksysulfuranylowego k_d , (ii) katalizowanej protonami reakcji eliminacji cząsteczki wody k_H oraz (iii) wymiany anionu OH⁻ przez drugą cząsteczkę tioeteru k_s , równanie (XXI).

$$k_{exp} = k_d + k_H [H_3 O^+] + k_s [S]$$
 (XXI)

Pomiar pseudo-pierwszorzędowych stałych szybkości zaniku pasma 340 nm w funkcji stężenia protonów $[H_3O^+]$ i stężenia kwasu alkilotiokarboksylowego [S] pozwala na wyznaczenie indywidualnych stałych szybkości k_d , k_H i k_S

Rys. 4.2.1_3 Obserwowana pseudo-pierwszorzędowa stała szybkości reakcji zaniku rodników hydroksysulfuranylowych ($\lambda_{max} = 340 \text{ nm}$) dla 2-MTEA w zależności od [H_3O^+] [2-MTEA] = 2*10⁻³ mol dm⁻³) (A) i w zależności od stężenia kwasu [2-MTEA] (pH = 7) (B).

Z punktu przecięcia prostej $k_{exp} = f([H_3O^+])$ [S] = const, z osią rzędnych otrzymano $k_d + k_s$ [S], z kolei z wartości *tg* kąta nachylenia prostej wyznaczono k_H (przykład dla 2-MTEA rysunek 4.2.1_3 A). Podobnie z wykresu $k_{exp} = f([S])$ [H₃O⁺] = const, z punktu przecięcia z osią rzędnych otrzymano $k_d + k_H$ [H₃O⁺] a z wartości *tg* kąta nachylenia prostej wyznaczono k_s (przykład dla 2-MTEA rysunek 4.2.1_3 B). Rozwiązanie równania (XXI) przy znanych parametrach k_H i k_s pozwala obliczyć k_d . Obliczone stałe k_d , k_H , k_s dla 2-MTEA i 2,2'-TDEA są zebrane w tabeli 4.

3-MTPA *i* 3,3'-TDPA $<\beta$ -CO₂H>; Ponieważ zanik rodnika hydroksysulfuranylowego w 3-MTPA i 3,3'-TDPA jest bardzo szybki, stałe szybkości addycji rodnika hydroksylowego do grupy tioeterowej tych kwasów $k_{(OH+S)}$ zostały obliczone w oparciu o metodę stanu quasi-stacjonarnego³, z szybkości narostu pasma absorpcji przypisanego rodnikom z wewnątrzcząsteczkowym wiązaniem S: O w λ_{max} =390 nm. W tym celu pseudo-pierwszorzędowa stała szybkości (k_{eyp}) była monitorowana w warunkach, w których tworzenie rodników hydroksysulfuranylowych jest etapem limitującym szybkość powstawania rodników z wewnątrzcząsteczkowym wiązaniem S∴O. Udział innych procesów prowadzących do zaniku rodnika hydroksysulfuranylowego (patrz równanie XXII) jest do zaniedbania tj. przy niskim stężeniu badanego kwasu 4,6*10-5 - 4*10-4 mol dm-3 i w pH zbliżonym do obojętnego). Wartości $k_{(OH+S)}$ obliczone z nachylenia prostych $k_{exp} = f([S])$ (rysunek 4.2.1 4 A przykład dla 3,3'-TDPA) są zebrane w tabeli 4.

Zanik rodnika hydroksysulfuranylowego w 3-MTPA *i* 3,3'-TDPA jest procesem bardziej złożonym niż w 2-MTEA i 2,2'-TDEA. Oprócz procesów opisywanych stałymi szybkości k_d , k_H i k_S w równaniu (XXI) występuje reakcja wewnątrzcząsteczkowej eliminacji anionu hydroksylowego z rodnika hydroksysulfuranylowego zachodząca z udziałem tlenu karboksylowego z grupy βkarboksylowej. W rezultacie stała szybkości zaniku rodnika hydroksysulfuranylowego opisywana jest równaniem (XXII)

$$k_{exp} = k_d + k_H [H_3 O^+] + k_S [S] + k_C$$
 (XXII)

Na oszacowanie stałej szybkości k_c w 3,3'-TDPA⁴ pozwala analiza pseudopierwszorzędowej stałej szybkości narastania pasma 390 nm w zależności od stężenia 3,3'-TDPA, w zakresie wyższych stężeń 3,3'-TDPA (rysunek 4.2.1_4 B krzywa a). Ponieważ znajdujący się w równowadze z kationem dimerowym (S::

³ Dla reakcji następczych typu $A \xrightarrow{k_1} B \xrightarrow{k_2} C$, w których $k_2 \gg k_1$ stężenie krótkożyjącego produktu pośredniego B jest bardzo małe w porównaniu ze stężeniami substratów i produktów końcowych, a jego zużycie następuje z taką samą szybkością jak jego tworzenie stężęnie produktu końcowego określane jest przez szybkość pierwszego najwolniejszego etapu a proces może być rozpatrywany jako $A \xrightarrow{k_1} C$ (Capellos i Bielski 1972, Schwetlick 1975, Emanuel i Knorre 1984).

⁴ W 3-MTPA dla wyższych stężeń kwasu alkilotiokarboksylowego pasmo absorcji kationorodników dimerowych (>S∴S<)⁺ powstających w drugorzędowej reakcji nakłada się na pasmo absorpcji rodników S∴O uniemożliwiając analizę.

stężeń 3,3'-TDPA wyższych od ~5*10⁻³ mol dm⁻³ wielkość k_{exp} - k_s [S] osiąga wartość graniczną odpowiadającą wartości k_c .

Rys. 4.2.1_4 Obserwowana pseudo-pierwszorzędowa stała szybkości powstawania rodników z

wewnątrzcząsteczkowym wiązaniem S: $O(\lambda_{max} = 390 \text{ nm})$ dla 3,3'-TDPA w zależności od stężenia kwasu [3,3'-TDPA], pH =5,8.(B) - a wartości zmierzone (B) - b wartości po odjęciu k_s[S].

Stałe szybkości eliminacji OHanionu W rodniku hydroksy-sulfuranylowym przez drugą cząsteczkę tioeteru $k_{\rm s}$ zostały obliczone Z eksperymentalnej stałej szybkości powstawania kationorodników $(S \therefore S <)^+$

mierzonej dla 3-MTPA w λ = 480 nm *i* 3,3'-TDPA λ = 510 nm, w zależności od stężenia badanych kwasów (przykład na rysunku 4.2.1_5, wyniki w tabeli 4).

⁵ Udział tego procesu w tworzeniu rodnika S∴O zwiększa się wraz ze wzrostem stężenia 3,3'-TDPA.

Rys. 4.2.1_5 Obserwowana pseudo-pierwszorzędowa stała szybkości reakcji powstawania kationorodników dimerowych $(S:.S<)^+$ ($\lambda_{max} = 510$ nm) w zależności od stężenia 3,3'-TDPA, pH = 5,8.

 Tabela 4

 Parametry kinetyczne reakcji rodnikowych kwasów alkilotiokarboksylowych

Związek	$k_{(OH+S)} * 10^{-9}$	$k_d * 10^{-6}$	$k_{H} * 10^{-10}$	$k_{s}*10^{-7}$	$k_{C}*10^{-8}$
	[mol ⁻¹ dm ³ s ⁻¹]	[S ⁻¹]	[mol ⁻¹ dm ³ s ⁻¹]	[mol ⁻¹ dm ³ s ⁻¹]	[S ⁻¹]
2-MTEA	8,7	5,2 ^{a)}	10,8	9,5	-
2,2'-TDEA	9,1	6,2 ^{a)}	17,7	11,4	-
3-MTPA	9,0	-	-	19	-
3,3'-TDPA	5,8	-	-	20	~1

^{a)} - Wyższe wartości stałych k_d w porówananiu do (CH₃)₂S (1,6*10⁶ s⁻¹, Bobrowski i Schöneich 1993) spowodowane są katalitycznym wpływem grup karboksylowych (Bobrowski *i in.* 1993).

Wydajność dekarboksylacji

$G(CO_2)$

W badanym zakresie pH (1 - 8,1) wydajność dekarboksylacji $G(CO_2)$ stanowi dla 2,2'-TDEA 80 - 100%, dla 3,3'-TDPA 10 - 15%, dla 3-CMTPA 64 - 84%, 2-CMTSA 68 - 94%, wydajności początkowej rodników OH (rysunek 4.2.1_6).

Rys. 4.2.1_6 Wydajność chemoradiacyjna dekarboksylacji kwasów alkilotiokarboksylowych w nasyconych N_2O roztworach wodnych zawierających 10^{-2} mol dm⁻³ kwasu, (linia ciągła odpowiada obliczonej wydajności rodników OH).

G(PNAP·⁻)

Pomiary wydajności chemoradiacyjnej anionorodników PNAP-⁻ pokazały, że powstające w wyniku dekarboksylacji 2,2'-TDEA rodniki α -(alkilotio)alkilowe nie redukują PNAP do PNAP-⁻. W nasyconych N₂O wodnych roztworach zawierających 5*10-³ mol dm-³ 2,2'-TDEA i 3*10-⁵ mol dm-³ PNAP, wydajność G(PNAP-⁻) w zakresie pH 3,3 -10,1 wynosiła 0,15+/-0,05, co odpowiada wydajności elektronów hydratowanych, które przereagowały z PNAP w reakcji konkurującej z reakcją elektronów hydratowanych z N₂O.

<u>EPR</u>

W napromienionej w temperaturze 77 K, próbce zawierającej $1,3*10^{-1}$ mol dm⁻³ 2,2'-TDEA w 10^{-1} mol dm⁻³ HClO₄, w temperaturze 77 - 120 K obserwuje się widmo pułapkowanych rodników OH zbliżone do oberwowanego przez Riederer'a *i in.*, 1983, w polikrystalicznym lodzie heksagonalnym (rysunek 4.2.1_7 A). Po rozmrożeniu do temperatury 140 - 160 K, w widmie dominuje (~85%) tryplet o wartości współczynnika g = 2,006 i sprzężeniu nadsubtelnym A_H \approx 1,9 mT (rysunek 4.2.1_7 B-a).

Rys. 4.2.1_7 Widmo EPR w zamrożonym do temeratury 77 K i napromienionym γ roztworze 0,13 mol dm⁻³ 2,2'-TDEA i 10⁻¹ mol dm⁻³ HClO₄ po rozmrożeniu do temperatury 100 K (A) i 140 K (B).

Świadczy to o powstawaniu rodnika zlokalizowanego na atomie węgla, w którym niesparowany elektron oddziałuje z dwoma protonami związanymi z tym samym atomem węgla. Widmo to jest zbliżone do obserwowanego przez Burlińską *i in*. 1994, w polikrystalicznych peptydach

metioninowych i świadczy o powstawaniu rodników α -(alkilotio)alkilowych (·CH₂-S-CH₂-CO₂H) w wyniku dekarboksylacji 2,2'-TDEA. Drugi składnik widma występującego w 140 - 160 K stanowi dublet o sprzężeniu A_H \approx 1,4 mT (rysunek 4.2.1_7 B-b) pochodzący najprawdopodobniej od rodników α -(alkilotio)alkilowych (HO₂C-·CH-S-CH₂-CO₂H) powstających w 2,2'-TDEA podczas deprotonacji kationorodnika >S·⁺. Dalsze rozmrażanie próbki do temperatur 180 - 200 K prowadzi do zaniku absorpcji mikrofalowej (Pogocki *i in.*, 1994).